

Mastering Windows
Presentation Foundation
Second Edition

Build responsive UIs for desktop applications with WPF

Sheridan Yuen

BIRMINGHAM - MUMBAI

Mastering Windows Presentation
Foundation
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Denim Pinto
Content Development Editor: Rosal Colaco
Senior Editor: Storm Mann
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Alishon Mendonsa

First published: February 2017
Second edition: March 2020

Production reference: 1270320

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-341-6

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Sheridan Yuen is a Microsoft .NET MCTS and Oracle Java SCJP certified software
developer, living in London, England. His passion for coding made him stand out from the
crowd right from the start. Since his second year at university, he was employed as a
teaching assistant for the first year student coding workshops and has been returning as a
guest lecturer.

Among other prestigious positions, he was the primary software developer for the Ministry
of Sound group for four years, working on their main music business application,
responsible for creating their multi-award-winning albums. This application managed to
increase its users' productivity by up to 80% in some cases.

In addition to this, he architected a unique ticket scanning application for their award-
winning nightclub, making it the first club in the world to introduce scanned ticket entry
across all streams for their clients. Coming from a musical background and being a
qualified audio engineer, with experience of record production and digital audio, this post
was a perfect union.

He soon became a popular figure in the C# and WPF sections of the Stack Overflow,
"question and answer" website, being awarded enough reputation by the community
members to raise him too well within the top half percent of all users. While authoring this
book and other projects has kept him away for some time, he is keen to return to continue
to help new users to get to grips with WPF.

About the reviewer

Alex Drenea is an experienced software developer and architect with more than 15 years of
experience working in various environments from enterprise to start-up. He has worked
extensively with WFP since its inception in 2006 when it was still called Avalon and led
teams at IBM building large scale WPF customer and enterprise applications.

Following that, he continued his journey by building on his WPF knowledge to become a
Windows Phone and UWP developer and published more than 20 applications in the
Windows store, with over half a million downloads. For his community contributions in the
Windows platform, and recently in the Azure Data platform, he has been recognized as
Microsoft MVP since 2016.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: A Smarter Way of Working with WPF 7
What is MVVM and how does it help? 8

Models 8
View Models 9
Views 10
Data binding 10
So how does MVVM help? 10
Is there a downside? 11

Debunking the myth about code behind 12
Learning how to communicate again 13

Introducing the ICommand interface 15
Handling events in Attached Properties 18
Making use of delegates 20

Structuring the application code base 23
Summary 33

Chapter 2: Debugging WPF Applications 34
Utilizing the output window 35
Putting Presentation Trace Sources to work 37
Discovering inner exceptions 43
Debugging data bound values 46

Outputting values to UI controls 47
Catching changing Dependency Property values 47
Exploiting converters 49

Summary 51

Chapter 3: Writing Custom Application Frameworks 52
What is an application framework? 52
Encapsulating common functionality 53

In base classes 58
Through interfaces 61
With Extension Methods 65
In UI controls 70
With converters 74

Constructing a custom application framework 82
Separating the Data Access Layer 99
Providing services 105

Implementing Dependency Injection 108

Table of Contents

[ii]

Connecting Views with View Models 117
Locating View Models 119

Summary 125

Chapter 4: Becoming Proficient with Data Binding 126
Data binding basics 126

Binding path syntax 127
Escaping invalid characters 130

Exploring the Binding class 131
Directing data bound traffic 134
Binding to different sources 135

Binding with priority 139
Binding from within control templates 140
Binding source changes 141
Converting data bound values 142
Binding multiple sources to a single target property 148

Dependency Properties 152
Setting metadata 155
Declaring read-only Dependency Properties 159
Registering Attached Properties 160
Prioritizing value setting sources 162

Data templates 168
Taking complete control 172
Displaying hierarchical data 175

Data binding to enumeration collections 179
Summary 182

Chapter 5: Using the Right Controls for the Job 183
Investigating the built-in controls 183

Inheriting framework abilities 184
Laying it on the line 186
Containing controls 187

Canvas 188
DockPanel 190
Grid 193
StackPanel 199
UniformGrid 201
WrapPanel 203
Providing custom layout behavior 205

Content controls 208
Presenting content 209

Items controls 211
Adorners 217

Modifying existing controls 223
Styling 223

Being resourceful 225
Merging resources 228

Table of Contents

[iii]

Triggering changes 231
Templating controls 237
Attaching properties 243

Combining controls 246
Creating custom controls 250
Summary 258

Chapter 6: Adapting the Built-In Controls 259
Inspecting protected methods 259

Clipping the layout 265
Altering default behavior 268

Creating overridable methods 276
Tailoring to attain our requirements 278

Populating with Data 281
Progressing toward the Target 287
Highlighting the selection 292

Indicating in the Axes 292
Emphasizing the Selection 299

Summary 309

Chapter 7: Mastering Practical Animations 310
Investigating timelines 310
Introducing key-frames 320
Telling stories 324

Controlling storyboards 326
Easing functions 334
Animating along a path 340
Creating everyday animations 341
Summary 357

Chapter 8: Creating Visually Appealing User Interfaces 358
Styling applications consistently 358

Overriding default control styles 359
Using professional icons 361

Layering visuals 363
Throwing shadows 363
Declaring multiple borders 364
Reusing composite visuals 366
Reflecting light 368
Creating glowing effects 370
Putting it all together 372

Moving away from the ordinary 375
Casting reflections 375
Exploring borderless windows 378
Visualizing data 386
Livening up the UI controls 402

Table of Contents

[iv]

Summary 414

Chapter 9: Implementing Responsive Data Validation 415
Using validation rules – to do or not to do? 416
Getting to grips with validation interfaces 417

Implementing the IDataErrorInfo interface 417
Introducing the INotifyDataErrorInfo interface 434

Annotating data 443
Varying levels of validation 447
Incorporating multiple validation techniques 449
Customizing the error template 454
Avoiding UI-based validation errors 457
Keeping Synchronized with Legacy Behavior 463
Amalgamating validation and visuals 465
Summary 476

Chapter 10: Completing that Great User Experience 477
Providing user feedback 477
Utilizing multiple threads 489

Discovering the Async and Await keywords 490
Building asynchrony into our framework 493

Going the extra mile 512
Producing in-application help 512
Enabling user preferences 514
Extending common courtesies 517
Unburdening the end user 520

Summary 522

Chapter 11: Improving Application Performance 524
Leveraging the power of hardware rendering 525
Making more efficient resources 527

Freezing objects 528
Using the right controls for performance 530

Drawing conclusions 531
Imaging more efficiently 546
Enhancing the performance of textual output 548

Liking the linking 553
Data binding 556

Registering Dependency Properties 557
Binding to collections 558

Shrinking data objects 559
Virtualizing collections 562
Handling events 564
Summary 567

Chapter 12: Deploying Your Masterpiece Application 568

Table of Contents

[v]

Installing Windows applications 568
Introducing the Setup Project 569
Working with the InstallShield Limited Edition project 574

Utilizing ClickOnce functionality 577
Securing deployments 579
Isolating storage 581

Accessing application versions 587
Summary 590

Chapter 13: What Next? 591
Turning your attention to future projects 593

Improving our application framework 594
Logging errors 597
Using online resources 597

Other Books You May Enjoy 599

Index 602

Preface
Microsoft Windows Presentation Foundation (WPF) provides several libraries and APIs
for developers to create engaging user experiences. This book features a wide range of
simple to complex examples to demonstrate how to develop enterprise-grade applications
for Windows desktop with WPF.

This updated second edition of Mastering Windows Presentation Foundation starts by
covering the benefits of using the Model-View-View Model (MVVM) software
architectural pattern with WPF, before guiding you through debugging your WPF apps.
The book will then take you through the application architecture and building the
foundation layer for your apps. As you advance, you'll get to grips with data binding,
explore the various built-in WPF controls, and customize them to suit your requirements.

Filled with intriguing and practical examples, this book delineates concepts that will help
you take your WPF skills to the next level. You'll learn to discover MVVM and how it
assists in developing with WPF, implement your own custom application framework,
understand how to adapt built-in controls, get up to speed with using animations,
implement responsive data validation, create visually appealing user interfaces, and
improve the performance of your app and learn how to deploy your applications.

Also, you will discover a smarter way of working with WPF using the MVVM software
architectural pattern, learn to create your own lightweight application framework to build
your future applications upon, understand data binding, and learn how to use it in an
application.

You'll learn how to create custom controls to meet your needs when the built-in
functionality is not enough. You'll also understand how to enhance your applications using
practical animations, stunning visuals, and responsive data validation. To ensure that your
app is not only interactive but also efficient, you'll focus on improving application
performance and finally discover the different methods for deploying your applications. By
the end of this book, you'll be proficient in using WPF for developing efficient yet robust
user interfaces.

Preface

[2]

Who this book is for
This Windows book is for developers with basic to intermediate-level knowledge of
Windows Presentation Foundation and for those interested in simply enhancing their WPF
skills. If you're looking to learn more about application architecture and designing user
interfaces in a visually appealing manner, you'll find this book useful.

What this book covers
Chapter 1, A Smarter Way of Working with WPF, introduces the Model, View, View Model
(MVVM) software architectural pattern and the benefits of using it with WPF.

Chapter 2, Debugging WPF Applications, provides essential tips on various methods of
debugging WPF applications, ensuring the ability to iron out any problems that may occur.

Chapter 3, Writing Custom Application Frameworks, introduces the indispensable concept of
application frameworks, with early examples that will be built upon as the book progresses.
You will have a fully functioning Framework with which to build your applications upon.

Chapter 4, Becoming Proficient with Data Binding, demystifies data binding and clearly
demonstrates how to use it in a practical application. A plethora of examples will help you
to understand which binding syntax to use in any given situation and to be confident that
your bindings will work as expected.

Chapter 5, Using the Right Controls for the Job, explains which controls to use in particular
situations and describes the various ways to modify them when required. It clearly outlines
how to customize existing controls and how to create custom controls when required.

Chapter 6, Adapting the Built-In Controls, focuses on changing control behavior through
extension. It first investigates how the built-in controls enable us to manipulate them
through derived classes, then describes how we can enable this technique in our own
controls. It ends with an extended example, showing how to attain our requirements
through control extension.

Chapter 7, Mastering Practical Animations, explains the ins and outs of WPF Animations,
detailing this lesser known functionality. It concludes with a number of ideas for practical
animations and continues to build upon the custom application framework.

Chapter 8, Creating Visually Appealing User Interfaces, offers advice for getting the most out
of the WPF visuals, while remaining practical, and provides handy tips on making
applications stand out from the crowd.

Preface

[3]

Chapter 9, Implementing Responsive Data Validation, presents a number of methods of data
validation to suit every situation and continues to build upon the custom application
framework. It covers full, partial, instant, and delayed validation and a variety of different
ways to display validation errors.

Chapter 10, Completing that Great User Experience, provides tips for creating applications
with a great user experience. Concepts introduced here, such as asynchronous data access
and keeping the end users well informed, will substantially improve the existing custom
application framework.

Chapter 11, Improving Application Performance, lists a number of ways to increase the
performance of WPF applications from freezing resources to implementing virtualization. If
you follow these tips and tricks, you can rest assured that your WPF applications will
perform as optimally as they can.

Chapter 12, Deploying Your Masterpiece Application, covers the final requirement for all
professional applications—deployment. It includes the older method of using the Windows
Installer software, along with the more common and up-to-date method of using the
ClickOnce functionality.

Chapter 13, What Next?, summarizes what you have learned from this book and suggests
what you can do with many of your various new skills. It provides you with further ideas
on extending the application framework.

To get the most out of this book
This book contains a large number of code examples, with the complete source code being
available for download from GitHub. In order to run the code, you will need the following
prerequisites:

Visual Studio 2019
Version 4.8 of the .NET Framework must be installed

If you do not already have these, they can both be downloaded and installed for free:

Visual Studio Community 2019 can be downloaded from https:/ /
visualstudio. microsoft. com/ downloads/ .
The latest version of the .NET Framework can be downloaded from https:/ /
dotnet.microsoft. com/ download/ dotnet- framework.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework
https://dotnet.microsoft.com/download/dotnet-framework

Preface

[4]

The complete source code that accompanies the book can be downloaded
from https:/ /github. com/ PacktPublishing/ Mastering- Windows-
Presentation- Foundation- Second- Edition.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- Windows- Presentation- Foundation- Second- Edition. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781838643416_ColorImages. pdf

https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/Mastering-Windows-Presentation-Foundation-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643416_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, path names, dummy URLs, user input, and Twitter handles. Here is an
example: "You could then declare a BaseDragDropManager class to be used in
the DragDropProperties class."

A block of code is set as follows:

public string Name
{
 get { return name; }
 set
 {
 if (name != value)
 {
 name = value;
 NotifyPropertyChanged("Name");
 }
 }
}

Any command-line input or output is written as follows:

System.Windows.Data Error: 17 : Cannot get 'Item[]' value (type
'ValidationError') from '(Validation.Errors)' (type
'ReadOnlyObservableCollection`1').
BindingExpression:Path=(Validation.Errors)[0].ErrorContent;
DataItem='TextBox' (Name=''); target element is 'TextBox' (Name='');
target property is 'ToolTip' (type 'Object')
ArgumentOutOfRangeException:'System.ArgumentOutOfRangeException: Specified
argument was out of the range of valid values.

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The Cancel button has been declared in the second row and column."

Warnings or important notes appear like this.

Preface

[6]

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
A Smarter Way of Working with

WPF
When Windows Presentation Foundation (WPF) was first released as part of the .NET
Framework Version 3.0 in 2006, it was billed as the future of desktop application Graphical
User Interface (GUI) languages and supporters claimed that it would put an end to the
previous GUI technology, Windows Forms. However, as time passed, it has fallen far short
of this claim.

There are three main reasons that WPF has not taken off as widely as previously expected.
The first reason has nothing to do with WPF and stems from the recent push to host
everything in the cloud and having web interfaces rather than desktop applications. The
second reason relates to the very steep learning curve and a very different way of working
that is required to master WPF.

The last reason is that it is not a very efficient language and if a WPF application has lots of
'bells and whistles' in, then either the client computers will need to have additional RAM
and/or graphics cards installed, or they could face a slow and stuttering user experience.

This explains why many companies that make use of WPF today are in the finance
industry, where they can afford to upgrade all users' computers to be able to run their
applications optimally. This book will aim to make WPF more accessible to the rest of us by
providing practical tips and tricks to help build our real-world applications more easily and
more efficiently.

One of the simplest changes with the biggest workflow improvements that we can make to
improve the way we work with WPF is to follow the MVVM software architectural pattern.
It describes how we can organize our classes to make our applications more maintainable,
testable, and generally simpler to understand. In this chapter, we will take a closer look at
this pattern and discover how it can help us to improve our applications.

A Smarter Way of Working with WPF Chapter 1

[8]

After discovering what MVVM is and what its benefits are, we'll learn several new ways to
communicate between the various components in this new environment. We'll then focus
on the physical structure of the code base in a typical MVVM application and investigate a
variety of alternative arrangements.

What is MVVM and how does it help?
Model-View-View Model (MVVM) is a software architectural pattern that was famously
introduced by John Gossman on his blog back in 2005 and is now commonly used when
developing WPF applications. Its main purpose is to provide a Separation of Concerns
between the business model, the User Interface (UI), and the business logic. It does this by
dividing them into three distinct types of core components: Models, Views, and View
Models. Let's take a look at how they are arranged and what each of these components
represent:

As we can see here, the View Models component sits between the Models and the Views
and provides two-way access to each of them. It should be noted at this point that there
should be no direct relationship between the Views and Models components and only
loose connections between the other components. Let's now take a closer look at what each
of these components represent.

Models
Unlike the other MVVM components, the Model constituent comprises of a number of
elements. It encompasses the business data model along with its related validation logic
and also the Data Access Layer (DAL), or data repositories, that provide the application
with data access and persistence.

The data model represents the classes that hold the data in the application. They typically
mirror the columns in the database more or less, although it is common that they are
hierarchical in form, and so may require joins to be performed in the data source in order to
fully populate them.

A Smarter Way of Working with WPF Chapter 1

[9]

One alternative would be to design the data model classes to fit the requirements in the UI,
but either way, the business logic or validation rules will typically reside in the same
project as the data model.

The code that is used to interface with whatever data persistence technology is used in our
application is also included within the Models component of the pattern. Care should be
taken when it comes to organizing this component in the code base, as there are a number
of issues to take into consideration. We'll investigate this further in a while, but for now,
let's continue to find out more about the components in this pattern.

View Models
The View Models can be explained easily; each View Model provides its associated View
with all of the data and functionality that it requires. In some ways, they can be considered
to be similar to the old Windows Forms code behind files, except that they have no direct
relationship with the View that they are serving. A better analogy, if you're familiar with
MVC, would be that they are similar to the Controllers in the Model-View-Controller
(MVC) software architectural pattern. In fact, in his blog, John describes the MVVM pattern
as being a variation of the MVC pattern.

They have two-way connections with the Model component in order to access and update
the data that the Views require, and often, they transform that data in some way to make it
easier to display and interact within the UI. They also have two-way connections with the
Views through data binding and property change notification. In short, View Models form
the bridge between the Model and the View, which otherwise have no connection to each
other.

However, it should be noted that the View Models are only loosely connected to the Views
and Model components through their data binding and interfaces. The beauty of this
pattern enables each element to be able to function independently from each other.

To maintain the separation between the View Models and the View, we avoid declaring
any properties of UI-related types in the View Model. We don't want any references to UI-
related DLLs in our View Models project, and so we make use of custom
IValueConverter implementations to convert them to primitive types. For example, we
might convert Visibility objects from the UI to plain bool values or convert the
selection of some colored Brush objects to an Enum instance that is safe to use in the View
Model. We will see several examples of converters throughout this book, but for now, let's
continue.

A Smarter Way of Working with WPF Chapter 1

[10]

Views
The Views define the appearance and layout of the UI. They typically connect with a View
Model through the use of their DataContext property and display the data that it supplies.
They expose the functionality provided by the View Model by connecting its commands to
the UI controls that the users interact with.

In general, the basic rule of thumb is that each View has one associated View Model. This
does not mean that a View cannot data bind to more than one data source or that we cannot
reuse View Models. It simply means that, in general, if we have a class called
SecurityView, it is more than likely that we'll also have an instance of a class named
SecurityViewModel that will be set as the value of that View's DataContext property.

Data binding
One often overlooked aspect of the MVVM pattern is its requirement for data binding. We
could not have the full Separation of Concerns without it, as there would be no easy way
of communicating between the Views and View Models. The XAML markup, data binding
classes, and ICommand and INotifyPropertyChanged interfaces are the main tools in
WPF that provide this functionality.

The ICommand interface is how commanding is implemented in the .NET Framework. It
provides behavior that implements and even extends the ever useful Command pattern, in
which an object encapsulates everything needed to perform an action. Most of the UI
controls in WPF have Command properties that we can use to connect them to the
functionality that the commands provide.

The INotifyPropertyChanged interface is used to notify binding clients that property
values have been changed. For example, if we had a User object and it had a Name
property, then our User class would be responsible for raising the PropertyChanged
event of the INotifyPropertyChanged interface, specifying the name of the property
each time its value was changed. We'll look much deeper into all of this later, but now let's
see how the arrangement of these components help us.

So how does MVVM help?
One major benefit of adopting MVVM is that it provides the crucial Separation of Concerns
between the business model, the UI, and the business logic. This enables us to do several
things. It frees the View Models from the Models, both the business model and the data
persistence technology.

A Smarter Way of Working with WPF Chapter 1

[11]

This in turn enables us to reuse the business model in other applications and swap out the
DAL and replace it with a mock data layer so that we can effectively test the functionality
in our view models without requiring any kind of real data connection.

It also disconnects the Views from the View logic that they require, as this is provided by
the View Models. This allows us to run each component independently, which has the
advantage of enabling one team to work on designing the Views, while another team works
on the View Models. Having parallel work streams enables companies to benefit from
vastly reduced production times.

Furthermore, this separation also makes it easier for us to swap the Views for a different
technology without needing to change our Model code. We may well need to change some
aspects of the View Models, for example, the new technology used for the Views may not
support the ICommand interface, but in principle, the amount of code that we would need to
change would be fairly minimal.

The simplicity of the MVVM pattern also makes WPF easier to comprehend. Knowing that
each View has a View Model that provides it with all the data and functionality that it
requires means that we always know where to look when we want to find where our data
bound properties have been declared.

Is there a downside?
There are, however, a few drawbacks to using MVVM, and it will not help us in every
situation. The main downside to implementing MVVM is that it adds a certain level of
complexity to our applications. First, there's the data binding, which can take some time to
master. Also, depending on your version of Visual Studio, data binding errors may only
appear at runtime and can be very tricky to track down. We will however look into
solutions for this in the next chapter.

Then, there are different ways to communicate between the Views and View Models that
we need to understand. Commanding and handling events in an unusual way takes a while
to get used to. Having to discover the optimal arrangement of all the required components
in the code base also takes time. So, there is a steep learning curve to climb before we can
become competent at implementing MVVM for sure. This book will cover all of these areas
in detail and attempt to lessen the gradient of that learning curve.

A Smarter Way of Working with WPF Chapter 1

[12]

However, even when we are well practiced at the pattern, there are still occasional
situations when it wouldn't make sense to implement MVVM. One example would be if
our application was going to be very small, it would be unlikely that we would want to
have unit tests for it or swap out any of its components. It would, therefore, be impractical
to go through the added complexity of implementing the pattern when the benefits of the
Separation of Concerns that it provides, were not required.

Debunking the myth about code behind
One of the great misconceptions about MVVM is that we should avoid putting any code
into the code behind files of our Views. While there is some truth to this, it is certainly not
true in all situations. If we think logically for a moment, we already know that the main
reason to use MVVM is to take advantage of the Separation of Concerns that its architecture
provides. Part of this separates the business functionality in the View Model from the user
interface-related code in the Views. Therefore, the rule should really be that we should avoid
putting any business logic into the code behind files of our Views.

Keeping this in mind, let's look at what code we might want to put into the code behind file
of a View. The most likely suspects would be some UI-related code, maybe handling a
particular event, or launching a child window of some kind. In these cases, using the code
behind the file would be absolutely fine. We have no business-related code here, and so we
have no need to separate it from the other UI-related code.

On the other hand, if we had written some business-related code in a View's code behind
file, then how could we test it? In this case, we would have no way to separate this from the
View, no longer have our Separation of Concerns and, therefore, would have broken our
implementation of MVVM. So in cases like this, the myth is no longer a myth... it is good
advice.

However, even in cases like this where we want to call some business-related code from a
View, it is possible to achieve without breaking any rules. As long as our business code
resides in a View Model, it can be tested through that View Model, so it's not so important
where it is called from during runtime. Understanding that we can always access the View
Model that is data bound to a View's DataContext property, let's look at this simple
example:

private void Button_Click(object sender, RoutedEventArgs e)
{
 UserViewModel viewModel = (UserViewModel)DataContext;
 viewModel.PerformSomeAction();
}

A Smarter Way of Working with WPF Chapter 1

[13]

Now, there are some who would balk at this code example, as they correctly believe that
Views should not know anything about their related View Models. This code effectively
ties this View Model to this View. If we wanted to change the UI layer in our application at
some point or have designers work on the View, then this code would cause us a problem.
However, we need to be realistic... what is the likelihood that we will really need to do
that?

If it is likely, then we really shouldn't put this code into the code behind file and instead
handle the event by wrapping it in an Attached Property, and we'll see an example of this
in the next section. However, if it is not at all likely, then there is really no problem with
putting it there.

For example, if we have a UserView, that has one accompanying UserViewModel class
and we are certain that we will not need to change it, then in this case, we can safely use the
above code, without fear that direct cast will cause an Exception to be thrown. Let's follow
rules when they make sense for us to follow them, rather than blindly sticking to them
because somebody in a different scenario said they were a good idea.

One other situation when we can ignore this 'No code behind' rule is when writing self-
contained controls based on the UserControl class. In these cases, the code behind files are
often used for defining Dependency Properties and/or handling UI events and for
implementing general UI functionality. Remember though, if these controls are
implementing some business-related functionality, we should write that into a View Model
and call it from the control so that it can still be tested.

There is definitely a perfect sense in the general idea of avoiding writing business-related
code in the code behind files of our Views and we should always try to do so. However, we
now hopefully understand the reasoning behind this idea and can use our logic to
determine whether it is Okay to do it or not in each particular case that may arise.

Learning how to communicate again
As we tend not to handle UI events directly, when using MVVM, we need alternative ways
to implement the same functionality that they provide. Different methods are required to
reproduce the functionality of different events. For example, the functionality of the
SelectionChanged event of a collection control is typically reproduced by data binding a
View Model property to the SelectedItem property of the collection control:

<ListBox ItemsSource="{Binding Items}"
 SelectedItem="{Binding CurrentItem}" />

A Smarter Way of Working with WPF Chapter 1

[14]

In this example, the setter of the CurrentItem property will get called by the WPF
Framework each time a new item is selected from the ListBox. Therefore, instead of
handling the SelectionChanged event in the code behind, we can call any method
directly from the property setter in the View Model:

public TypeOfObject CurrentItem
{
 get { return currentItem; }
 set
 {
 currentItem = value;
 DoSomethingWithTheNewlySelectedItem(currentItem);
 }
}

Note that we need to keep any methods that we call from data bound property setters from
doing too much, as the time that it takes to execute them could negatively affect the
performance when entering data. However, in this example, we would typically use this
method to start an asynchronous data access function using a value from the current item
or alter the value of another property in the View Model.

Many other UI events can be replaced with some form of Trigger in the XAML markup
directly. For example, imagine that we had an Image element that was set as the Content
property value of a Button control and that we wanted the Image element to be semi-
transparent when the Button was disabled. Instead of handling the
UIElement.IsEnabledChanged event in the code behind file, we could write a
DataTrigger in a Style that we could apply to the Image element:

<Style x:Key="ImageInButtonStyle" TargetType="{x:Type Image}">
 <Setter Property="Opacity" Value="1.0" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding IsEnabled,
 RelativeSource={RelativeSource FindAncestor,
 AncestorType={x:Type Button}}, FallbackValue=False}"
 Value="False">
 <Setter Property="Opacity" Value="0.5" />
 </DataTrigger>
 </Style.Triggers>
</Style>

A Smarter Way of Working with WPF Chapter 1

[15]

Binding syntax will be covered in detail in Chapter 4, Becoming Proficient With Data Binding,
but in short, the binding in this DataTrigger is specifying the target as the IsEnabled
property of the ancestor (or parent) of the Image element with a type of Button. When this
binding target has a value of False, the Opacity property of the Image will be set to 0.5
and set back to its original value when the target property value is True. Therefore, the
Image element in our Button will become semi-transparent when the Button is disabled.

Introducing the ICommand interface
When it comes to button clicks in WPF and MVVM, instead of handling the well-known
Click event, we typically use some form of command that implements the ICommand
interface. Let's take a look at an example of a basic standard command:

using System;
using System.Windows.Forms;
using System.Windows.Input;

public class TestCommand : ICommand
{
 public event EventHandler CanExecuteChanged;

 public void Execute(object parameter)
 {
 MessageBox.Show("You executed a command");
 }

 public bool CanExecute(object parameter)
 {
 return true;
 }
}

Please note that in this book, we will display code with two-space tabs,
instead of the more commonly used four-space tabs, in order to enable
more characters of each code snippet to fit onto each line.

We can see that it has an Execute method, where the functionality that the command
provides is performed. The CanExecute method is called by the CommandManager at
various points over time, when it believes that the output value may have changed. We'll
cover this in more detail later, but basically, raising the CanExecuteChanged event is one
of the ways to trigger the CommandManager to do this. The output of the CanExecute
method specifies whether the Execute method can be called or not.

A Smarter Way of Working with WPF Chapter 1

[16]

You can imagine how cumbersome it would be if we had to create one of these classes for
every action that we needed to implement. Furthermore, there is no context of where the
command was called from other than the single command parameter. This means that if we
wanted the command to add an item into a collection, we would have to put both the
collection and the item to add into another object so that they could both be passed through
the single input parameter.

When using MVVM, rather than implementing the commands in the standard way, we
tend to use a single, reusable implementation that allows us to handle actions with
standard methods directly in the View Model. This enables us to use commands without
having to create a separate class for each one. There are a number of variations of this
command, but its simplest form is shown here:

using System;
using System.Windows.Input;

public class ActionCommand : ICommand
{
 private readonly Action<object> action;
 private readonly Predicate<object> canExecute;

 public ActionCommand(Action<object> action) : this(action, null) { }

 public ActionCommand(Action<object> action,
 Predicate<object> canExecute)
 {
 this.action = action;
 this.canExecute = canExecute;
 }

 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }

 public bool CanExecute(object parameter)
 {
 return canExecute == null ? true : canExecute(parameter);
 }

 public void Execute(object parameter)
 {
 action(parameter);
 }
}

A Smarter Way of Working with WPF Chapter 1

[17]

The action parameter of type Action<object> will hold the reference to the method that
will be called when the command is executed and the object generic parameter relates to
the optionally used command parameter. The canExecute parameter of
type Predicate<object> will hold the reference to the method that will be called to
verify whether the command can be executed or not and its object generic parameter
relates to the optionally used command parameter again.

The CanExecuteChanged event should be raised whenever the canExecute parameter
value changes. It is typically handled by command sources, such as the Button control, to
set their IsEnabled property value appropriately. When a command source receives a
notification that this event has been raised, it will call the ICommand.CanExecute method
to check the new value. Therefore, when a command can execute, its data bound control
will be enabled and when it can't, its data bound control will be disabled.

The CommandManager.RequerySuggested event will be raised when
the CommandManager detects a change in the UI that could reflect on whether a command
could execute or not. For example, this could be due to a user interaction, such as the
selection of an item in a collection or some other change in focus. Therefore, connecting one
to the other seems to be a logical thing to do. In fact, an example of this is actually found in
the source code of the .NET RoutedCommand class.

This command class is typically used in the View Model classes, as shown in the following
example, where the command functionality comes from the Save method and the bool
return value of the CanSave method determines whether the command can execute or not:

public ICommand SaveCommand
{
 get { return new ActionCommand(action => Save(),
 canExecute => CanSave()); }
}

A safer way to ensure that the command is never called by code when the CanExecute
condition is not satisfied would be to make this alteration; however, note that the
CommandManager class will always perform this check before calling any commands
anyway:

public void Execute(object parameter)
{
 if (CanExecute(parameter)) action(parameter);
}

A Smarter Way of Working with WPF Chapter 1

[18]

Full credit for this custom command should go to Josh Smith, as his RelayCommand class
was the first implementation like this that I came across, although there are several
variations to be found online. The beauty of this particular implementation should not be
underestimated. Not only is it simple, elegant, and saves us from writing large amounts of
code, but it also makes testing our functionality much easier, as our command code can
now be defined right in our View Models.

We'll look at this ActionCommand again and in more detail in Chapter 3, Writing Custom
Application Frameworks, but for now, let's move on to the next method of communication.

Handling events in Attached Properties
There is one way to handle events in WPF without having to resort to writing code in the
code behind file of a View. Using Attached Properties, we can encapsulate the handling of
events and effectively expose their behavior using properties that we can data bind to in
our Views. Let's take a look at a simple example using the PreviewKeyDown event:

public static DependencyProperty OnEnterKeyDownProperty =
 DependencyProperty.RegisterAttached("OnEnterKeyDown",
 typeof(ICommand), typeof(TextBoxProperties),
 new PropertyMetadata(OnOnEnterKeyDownChanged));

public static ICommand GetOnEnterKeyDown(DependencyObject dependencyObject)
{
 return (ICommand)dependencyObject.GetValue(OnEnterKeyDownProperty);
}

public static void SetOnEnterKeyDown(DependencyObject dependencyObject,
 ICommand value)
{
 dependencyObject.SetValue(OnEnterKeyDownProperty, value);
}

private static void OnOnEnterKeyDownChanged(
 DependencyObject dependencyObject,
 DependencyPropertyChangedEventArgs e)
{
 TextBox textBox = (TextBox)dependencyObject;
 if (e.OldValue == null && e.NewValue != null)
 textBox.PreviewKeyDown += TextBox_OnEnterKeyDown;
 else if (e.OldValue != null && e.NewValue == null)
 textBox.PreviewKeyDown -= TextBox_OnEnterKeyDown;
}

private static void TextBox_OnEnterKeyDown(object sender, KeyEventArgs e)

A Smarter Way of Working with WPF Chapter 1

[19]

{
 if (e.Key == Key.Enter || e.Key == Key.Return)
 {
 TextBox textBox = sender as TextBox;
 ICommand command = GetOnEnterKeyDown(textBox);
 if (command != null && command.CanExecute(textBox))
 command.Execute(textBox);
 }
}

As can be seen in this example, the event is handled by attaching an event handler in the
normal way, except that all relating code is encapsulated within the class that declares the
Attached Property. Let's take a closer look. First, we declare an Attached Property named
OnEnterKeyDown of type ICommand in a class named TextBoxProperties, and we pass a
reference of our handling method to the PropertyChangedCallback delegate parameter
of the PropertyMetadata constructor.

The GetOnEnterKeyDown and SetOnEnterKeyDown methods represent the normal way to
get and set Attached Property values. In the unfortunately named
OnOnEnterKeyDownChanged method, which will be called when the property value
changes, we look at the NewValue and OldValue values of the
DependencyPropertyChangedEventArgs input parameter in order to decide whether we
need to attach or detach the event handler to the PreviewKeyDown event of the relevant
TextBox.

If the OldValue value is null and the NewValue value is not null, it means that there was
no previous value, and so the property is being set for the first time. In this case, we want to
attach the event handler. Conversely, when the OldValue value is not null and the
NewValue value is null, it means that there previously was a value, which has been
removed, so we should detach the event handler.

Finally, the TextBox_OnEnterKeyDown event handling method first detects whether either
the Enter key or the Return key were pressed. If one was pressed, the data bound ICommand
instance is checked for null and if the command can execute, it is then executed. Therefore,
we have effectively wrapped a PreviewKeyDown event in an Attached Property and can
now execute any command that has been data bound to it when the user presses Enter on
their keyboard.

A Smarter Way of Working with WPF Chapter 1

[20]

In order to use this Attached Property, we must first add a XAML namespace prefix for our
Attached folder in the XAML file of the View that this functionality is required in. Note
that the TextBoxProperties class will be declared in the Attached folder of the Views
project and so, its namespace will be as follows:

xmlns:Attached="clr-namespace:CompanyName.ApplicationName.Views.Attached;
 assembly=CompanyName.ApplicationName.Views"

Microsoft's convention for naming these prefixes is for the first character to be a lowercase
letter, but it has always made more sense to me to simply use the last segment of the
declared namespace, which will start with a capital letter. Once you have defined the
prefix, you can use the Attached Property, as shown in the following example:

<TextBox Attached:TextBoxProperties.OnEnterKeyDown="{Binding Command}" />

Any UI events that we might need to handle in our applications can be encapsulated in
Attached Properties in this same way. At first, this might seem to be a complicated way to
handle events, compared with having a simple handler in a code behind file, but once we
have a collection of these properties declared, we will find ourselves having to create fewer
and fewer new ones. Think of them as simply being a reusable way of converting events
into properties.

Making use of delegates
Delegates are very similar to events and, in fact, events can be thought of as a particular
kind of delegate. They are a very simple tool to use to pass a signal or message from one
place to another in the program. Unlike when creating custom events, we are not forced to
use particular input parameters, for example, some form of the EventArgs class. We are
totally unconstrained when creating custom delegates and are able to define our own
method signatures, including both input and output parameter types.

As most of you will already be familiar with events and event handling, you'll already
inadvertently know how to use delegates too. Let's look at a simple example. Imagine that
we have a parent View Model that spawns child View Models and that one of these child
View Models is paired with a View that enables administrative users to select security
permissions. Now, let's imagine that the parent View that relates to the parent View Model
has a menu that needs to be updated depending on the user's selection in the child View.
How do we notify the parent View Model upon selection?

A Smarter Way of Working with WPF Chapter 1

[21]

This is where delegates save the day. Keeping this example simple initially, let's say that we
just need to notify the parent View Model that a particular change has been made so that it
can refresh the current user's security permissions from a database. In this case, we only
need to pass a signal, so we can create a delegate with no input or output parameters. We
can declare it in the View Model that will be sending the signal, in this case, the child View
Model:

public delegate void Signal();

Note that we define it in the same way that we define an abstract method, except that the
abstract keyword is replaced with the delegate keyword after the access modifier. In
short, a delegate defines a type that references a method with a particular signature. Now
that we have defined our signaling delegate, we need to create a way for elements outside
the View Model to use it. For this, we can simply create a property of the type of our new
delegate in the same View Model:

public Signal OnSecurityPermissionChanged { get; set; }

As we don't need any property change notifications for this property, we can save
ourselves some typing and take advantage of the .NET Auto-Implemented Property syntax.
Bear in mind that delegates work in a multicast way like events, meaning that we can
attach more than one handler to each one. In order to do this, we need to use the +=
operator to add handlers for the delegate, and in this example, we would want to do that in
the parent View Model when the child View is instantiated:

ChildViewModel viewModel = new ChildViewModel();
viewModel.OnSecurityPermissionChanged += RefreshSecurityPermissions;

Here, we have assigned the RefreshSecurityPermissions method in the parent View
Model to be the handler for this delegate. Note that we omit the parenthesis and the input
parameters if there were any when attaching the handler. Now, you may be wondering,
"What does the method signature of this handler look like?", but you already have the answer to
this. If you remember, we declared the delegate with the signature of the method that we
want to handle it. Therefore, any method that shares this signature can be a handler for this
type of delegate:

private void RefreshSecurityPermissions()
{
 // Refresh user's security permissions when alerted by the signal
}

A Smarter Way of Working with WPF Chapter 1

[22]

Note that the name used is irrelevant and all that matters when matching the delegate
signature are the input and output parameters. So, we now have our delegate declared and
hooked up to a handler in the parent View Model, but it's still not going to do anything
because we haven't actually called it yet. In our example, it's the child View Model that is
going to call the delegate because that's the object that needs to send out the information or
signal in this case.

When calling delegates, we must always remember to check for null before trying to use
them because there may be no handlers attached. In our example, we'd call our Signal
delegate via the OnSecurityPermissionChanged property at the point that we need to
send the signal from the child View Model, let's say in reaction to a user changing their
own security permissions:

if (OnSecurityPermissionChanged != null) OnSecurityPermissionChanged();

Alternatively, we could do so using the more concise null conditional operator in C#
Version 6.0, which calls the delegate's Invoke method if it is not null:

OnSecurityPermissionChanged?.Invoke();

Note that we do need to include the parenthesis when calling the delegate in the first
example even though OnSecurityPermissionChanged is a property. This is because the
delegate type of the property relates to a method and it is that method that we are calling.
Please bear in mind that the first of these methods is not thread safe, so if thread safety is
important for your application, then you will need to use the latter way.

We now have the complete picture, but while it is common to have a signal-sending
delegate such as this, it is not overly useful because it only passes a signal with no other
information. In many real-world scenarios, we would typically want to have some sort of
input parameter so that we could pass some information, rather than just a signal.

For example, if we wanted to be notified with details each time a user selected a different
item from a collection control in the UI, we could add a CurrentItem property into a
generic BaseCollection class in our application and data bind it to the data bound
collection control's SelectedItem property. This CurrentItem property would then be
called by the WPF Framework each time a user makes a new selection, and so we can call
our new delegate from its property setter:

protected T currentItem;

public virtual CurrentItemChange CurrentItemChanged { get; set; }

public virtual T CurrentItem
{

A Smarter Way of Working with WPF Chapter 1

[23]

 get { return currentItem; }
 set
 {
 T oldCurrentItem = currentItem;
 currentItem = value;
 CurrentItemChanged?.Invoke(oldCurrentItem, currentItem);
 NotifyPropertyChanged();
 }
}

Delegates can be used to communicate between any related classes as long as they have
access to the class that exposes the delegate so that they can attach a handler. They are
commonly used to send information between child Views or View Models and their
parents, or even between Views and View Models, but they can also be used to pass data
between any two connected parts of the application.

Structuring the application code base
Now that we have a better understanding of the MVVM pattern, let's look at how we might
implement it in a WPF application. What should the folder structure of our application be
like? Clearly, we'll need somewhere to put our Models, Views, and View Models; however,
how we arrange them will somewhat depend on the overall size of our application.

As we have heard, very small projects do not really suit MVVM because implementing it
can involve a lot of preparation and often, the benefits do not apply. For small WPF
applications, we would typically have just one project in our WPF application. In these
cases, our classes would be separated into different folders within the single project.

With larger scale applications, we arrange our classes in the same basic structure, but as
there are more classes and more chance that we want to reuse some of this code, it makes
sense to use separate projects instead of folders. Either way, our classes should end up with
the same CLR namespaces, as they tend to follow the structure of the application,
regardless of whether those classes were separated using folders or projects.

While the CLR namespace in our startup project might be something along the lines of
CompanyName.ApplicationName, the namespace of the classes in the Models component
would be, or start with, CompanyName.ApplicationName.Models. For the purpose of the
remainder of this book, we will assume that we are dealing with a large-scale WPF
application and using projects for the separation of our classes.

A Smarter Way of Working with WPF Chapter 1

[24]

There is nothing in the MVVM pattern that dictates what structure our code base should
have, although there are clues. We will clearly need Views and ViewModels projects, but
the Models project is less clearly defined. There are several elements within the Models
component of MVVM, but we don't necessarily want to group them all into a single project
in our code base. There are other projects that will be required too. Let's visualize some
possible structures so that we can get started with building our application:

A Smarter Way of Working with WPF Chapter 1

[25]

A Smarter Way of Working with WPF Chapter 1

[26]

These examples offer an insight into what the project structure of an MVVM-based WPF
application might look like. However, nothing is set in stone and we are free to rename and
to reorganize our application projects as we see fit. The important thing is how the
components are connected together rather than the arrangement of the application files.

After we have developed a number of WPF applications, we get a feel for which project
names and which structure we prefer, so I'd suggest trying a few variations and seeing
which you feel more comfortable working with. Of course, some of us may not have the
luxury of being able to create or alter the structure of the application that we work on. Let's
first focus on the projects common to both example structures.

We see that the Images and Resources folders reside in the startup project. While this is
customary, they can technically reside in any project or even in their own project. However,
I prefer to keep them in this project because it provides a marginal performance benefit.
Typically, when using MVVM, the only other files in the startup project will be the
MainWindow.xaml and MainWindow.xaml.cs files, unless they reside with the other
views, and the App.xaml (possibly with its code behind file) and app.config files.

The Images folder contains the images and icons that are displayed in the UI controls,
whereas the Resources folder normally contains any resource files, such as XML schemas
or text or data files that are used by the application.

The next project is named Converters and is fairly self-explanatory. It only contains
classes that have implemented the IValueConverter or
IMultiValueConverter interfaces and are used for converting data-bound values in the
Views. These classes are all reusable and the DLL from this project should be kept up to
date and shared among our other applications.

Both examples show an Extensions project, but this is entirely optional and not a
requirement of the MVVM pattern. I just happen to find Extension Methods to be an
essential part of .NET development, having built up a large collection of invaluable helper
methods. After getting used to being able to call Add on an IEnumerable instance or
ToObservableCollection on a query result, for example, I now reuse them in every
application. We'll see some examples of these in Chapter 3, Writing Custom Application
Frameworks, Chapter 9, Implementing Responsive Data Validation, and Chapter 10, Completing
That Great User Experience.

The next common project that we can see is a project called Managers. Others may prefer to
call this Engines, Services, or something similar, but that is just a personal preference,
and either way, the content will be the same. In this project, we typically find a number of
classes that together provide a wide variety of functionality to the View Models.

A Smarter Way of Working with WPF Chapter 1

[27]

For example, in this project, we might find classes named ExportManager,
FeedbackManager, HardDriveManager, WindowManager, and so on.

It is important to have a project like this, where we have one common place to provide all
of the required specialized functionality for our application, rather than having to repeat
the code in each View Model that requires that certain functionality. These classes are
totally reusable between applications and this arrangement also promotes behavioral
consistency throughout the application.

For example, without consolidating all of our functionality in this project, we might be
tempted to copy and paste certain bits of code from one View Model to another. If the code
then requires a change in the future, we may not remember that it has been copied and only
update it in one View Model, thereby breaking the consistency of the application.

Another benefit of utilizing a project like this is that it reduces the number of references that
the other projects need. The Managers project will typically require many references to be
added, whereas the View Model and other classes that make use of its functionality will
only need to add a single reference to this project.

Some or all of the functionality from these classes can be exposed through a
BaseViewModel class and can therefore be made available to every View Model. We'll see
more about this in Chapter 3, Writing Custom Application Frameworks, but for now, let's start
to look at the differences between the two structures.

In the first structure example, the Business folder within the Models project simply
represents the business data models of the application. There's no real need to have these
classes in a separate Business folder other than the fact that it highlights that they are
connected with the ViewModels.Business View Models and the Views.Business
Views.

Technically, the data model classes in our application should represent our business objects
and not contain any properties that bear no relevance to the business model, such as
properties named CurrentItem or IsSelected. If this were the case and they were
defined in their own project, as shown in the first example, then we could reuse their DLL
in our other business applications. Alternatively, perhaps we already have a DLL
representing the business model from another application that we will be reusing in the
next application.

In either of these cases, we would need to add other folders into the ViewModels project in
which we would implement an additional View Model class for each business model class
to be displayed. This arrangement is shown in the ViewModels. Business folder of the first
example and demonstrates the separation of the data model from the Views.

A Smarter Way of Working with WPF Chapter 1

[28]

In these classes, we would encapsulate each public business model property in a new
property that raised change notification and add any further properties required by the UI.
It would look similar to the following example, where the BaseBusinessViewModel class
simply implements the INotifyPropertyChanged interface:

using System;

namespace CompanyName.ApplicationName.Models.Business
{
 public class User
 {
 public User(Guid id, string name, int age)
 {
 Id = id;
 Name = name;
 Age = age;
 }

 public Guid Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }
 }
}

using System;
using CompanyName.ApplicationName.Models.Business;

namespace CompanyName.ApplicationName.ViewModels.Business
{
 public class UserViewModel : BaseBusinessViewModel
 {
 private User model;
 private bool isSelected = false;

 public UserViewModel(User model)
 {
 Model = model;
 }

 public User Model
 {
 get { return model; }
 set { model = value; NotifyPropertyChanged(); }
 }

A Smarter Way of Working with WPF Chapter 1

[29]

 public Guid Id
 {
 get { return Model.Id; }
 set { Model.Id = value; NotifyPropertyChanged(); }
 }

 public string Name
 {
 get { return Model.Name; }
 set { Model.Name = value; NotifyPropertyChanged(); }
 }

 public int Age
 {
 get { return Model.Age; }
 set { Model.Age = value; NotifyPropertyChanged(); }
 }

 public bool IsSelected
 {
 get { return isSelected; }
 set { isSelected = value; NotifyPropertyChanged(); }
 }
 }
}

When implementing this pattern, after each data object was loaded from the data source, it
would need to be wrapped in one of these View Model classes before being displayed in
the UI:

User user = new User(Guid.NewGuid(), "James Smith", 25);
UserViewModel userViewModel = new UserViewModel(user);

Following the pattern in the first example structure through to the Views project, we see
that it also contains a Business folder. Typically, we could find a small, individual object-
sized View there for each of these business model-related View Models. However, in the
vast majority of applications, this additional level of separation between the business model
and the UI is simply unrequired. Also, following this pattern adds a small overhead to all
implementation and data access times.

For some, a viable alternative would be to simply add the properties and property change
notification required by the UI straight into the data model classes. If we don't need this
separation, then there is little point in writing all of the extra code.

A Smarter Way of Working with WPF Chapter 1

[30]

I am a great fan of Agile practices and one of the twelve principles from the Manifesto for
Agile Software Development summarizes this point perfectly:

"Simplicity--the art of maximizing the amount of work not done--is essential"

This simpler, alternative implementation is shown in the DataModels project of the second
example, where the business model classes are combined with the UI-related properties,
along with the business rules or validation logic.

In other types of applications, you may find a separate validation layer that sits between the
DAL and the code behind the UI layer. But as we'll see in Chapter 9, Implementing
Responsive Data Validation, with WPF, we can build validation right into the business
classes, along with the properties that they are validating.

This DataModels project contains a number of sub-folders, grouping similar types of
classes together. The Collections folder typically contains an extension of the
ObservableCollection<T> class for each data model class in the application. The Enums
folder is also often well used in most WPF applications, as enumerations are great to use
when data bound to either radio buttons or checkboxes.

The interfaces found in the Interfaces folder are essential to enable the functionality of
the base classes, as we'll see in Chapter 3, Writing Custom Application Frameworks. If we're
likely to use a large number of delegates in our application, then it also makes sense to
organize them into a separate Delegates folder as well. Otherwise, if a delegate is strongly
tied to a particular class, they can just be declared locally in the classes that will be raising
them.

One other alternative would be to have a single class in the Models project that
encapsulates all of the application delegates, although this would require prefixing the
name of this class to the delegate names when using them, for example,
Delegates.CloseRequest. Declaring each delegate in the class that uses them enables us
to reference them directly, for example, CloseRequest.

The data model classes in this project could be thought of as View Models too, although
View Models that only serve the display of individual objects, as opposed to those that
serve the main application Views. They would have a base class that implements the
INotifyPropertyChanged interface like the main View Models, but then it would also
typically implement a validation error interface too.

They also differ from the main application View Models because they generally provide no
functionality other than validation to their associated Views. We can think of these classes
as mere data containers with a few extra properties to enable effective communication with
the UI.

A Smarter Way of Working with WPF Chapter 1

[31]

When following this structure, we can render these individual object-sized View Models in
the UI using data templates, so we generally don't need to declare a separate View for each
of them. Furthermore, we may want to display the same objects differently in different
parts of the application, or even switch their display in response to some user action and
that is also easier to accomplish with data templates.

This explains why these objects do not reside in the View Models project along with the
main application View Models. If you remember, each View Model should only have one
associated View. For the purpose of this book, this simpler, alternative implementation is
the pattern that we will be following. Now, let's continue by investigating the DAL of the
application.

The DataProviders project from the first example is responsible for providing access to
the persisted data source of the application. Another commonly used name is
Repositories, but again, you can call it what you like. The important thing is that it has
an essential Interfaces folder that contains one or more interfaces that form the
connection between the data source(s) and the rest of the application.

The DataProviders and Interfaces folders in the second example appear within the
Models project, but they have the same responsibilities. Either way, it is through the use of
these interfaces that we are able to disconnect the data source and replace it with a mock
source of some kind when testing. We will look at an example of this in Chapter 3, Writing
Custom Application Frameworks, but for now, let's continue.

The ViewModels project is fairly easy to understand, as it just contains View Models. You
may be wondering why there is a Commands folder inside it. If we were using commands in
the old fashioned way, writing a separate class for each command, then we could end up
with a great many classes and that would probably warrant putting them into their own
project.

However, if you remember, we will be using only one single command, the
ActionCommand. As this will be used by the View Model classes alone, it makes sense to
include it in their project. We've already covered the differences in the View Models and
Views projects between the two example structures, so let's finish off looking at the
remaining common parts.

We often find an Attached folder in the Views project that contains the Attached
Properties that are used in the application. As these classes contain View-related code and
are only used by the Views, it is logical that they should reside here. Alongside that, we see
the Controls folder where we find reusable user controls and/or custom controls, such as
a custom textbox that spawns a child window to help with editing when clicked or a
custom clock face that can be used to enter a time.

A Smarter Way of Working with WPF Chapter 1

[32]

At the bottom of both example structures, we see the test projects that contain the code that
tests our application. If your application needs testing, this is a good pattern to follow. By
prefixing the name of the projects that we will be testing with a Test domain, they will all
appear in the Visual Studio Solution Explorer in one group, either above or below the other
projects, and in the same order as the projects being tested.

The Mocks project typically hosts the application objects to be used while testing the
application. This would normally include any mock data generation or provider classes and
mock Manager classes. We may need to create these mock Manager classes if we don't
want to use expensive resources while testing, or in case they access any UI elements that
we also want to avoid when testing. Let's take a look at an example of one possible method
of a UiThreadManager class:

public Task RunAsynchronously(Action method)
{
 return Task.Run(method);
}

This method is fairly straightforward and enables us to pass a reference to any method that
we want to run asynchronously. It simply passes the method reference to the Task.Run
method and lets it do its thing. It can be called like this:

UiThreadManager.RunAsynchronously(() => GenerateReports());

However, running code asynchronously in unit tests can have unpredictable results that
may make them fail. Therefore, when testing, we need to use a MockUiThreadManager
class and implement its RunAsynchronously method, as follows:

public Task RunAsynchronously(Action method)
{
 Task task = new Task(method);
 task.RunSynchronously();
 return task;
}

In this method, we can see that we use the RunSynchronously method of the Task class to
run the referenced method synchronously, or in other words, immediately and on the same
thread. In effect, this simply bypasses the functionality of the original method. Using these
mock objects enable us to run different code while testing than we do at runtime. We'll see
more examples of these mock objects in Chapter 3, Writing Custom Application Frameworks,
but let's first take a look back at what we have covered so far.

A Smarter Way of Working with WPF Chapter 1

[33]

Summary
In this chapter, we have discovered what the MVVM architectural pattern is and the
benefits of using it when developing WPF applications. We're now in a better position to
decide which applications to use it with and which not to. We started looking into the
various new ways of communicating between the various components of this pattern and
also investigated the most common ways of organizing our source code. We are now ready
to start setting out our own application structures.

In the next chapter, before we properly get started building our application, we'll look at
several methods of the sometimes tricky task of debugging our data bound values. We'll
discover other useful tips and tricks that we can use to help us to iron out any problems
that may occur in our applications so that once we start building, we'll be able to avoid
wasting time with problems that may arise.

2
Debugging WPF Applications

When our WPF programs don't work as expected, we need to debug them, as we would
with any other language. However, at first it can seem to be a daunting task, as WPF is very
different from other languages. For example, when declaring a Dependency Property, we
normally add a CLR property wrapper for convenience. However, the WPF Framework
won't call it when the property value is changing, so we'd wait a long time for a break point
in that setter to be hit

When we're testing our newly developed code, we need to be able to check the values of
our data bound properties, and there are a number of ways to do that, although some are
far from obvious. In this chapter, we'll investigate a number of important sources of
information to help us to locate the mistakes in our code.

We'll discover a variety of tactics to help us when debugging the data bound values and
find out how to track down the actual cause of a problem when faced with the dreaded
XamlParseException. We'll cover all of these topics in detail shortly, but for now, let's
first start with the absolute basics.

Debugging WPF Applications Chapter 2

[35]

Utilizing the output window
When we've made changes to our XAML but don't see what we are expecting to see in the
UI, the first place to look for errors is in the Output window of Visual Studio. If this
window is not already visible, then you can display it by selecting the Output option from
the View menu or by pressing Ctrl + W and then O.

However, if you have a binding error but don't see any reference to it in the Output
window, it could be because your Visual Studio is not currently set up to output debug
information to it. You can turn this functionality on in the Visual Studio Options dialog
window. Navigate to Tools | Options | Debugging | Output Window | General Output
Settings.

The General Output Settings section has several options that you can turn on and off. The
most important ones are All debug output and Exception Messages, but it is generally a
good practice to leave them all set to On. When set, binding errors will be displayed in the
Output window in the following format:

System.Windows.Data Error: 40 : BindingExpression path error:
'ViewName' property not found on 'object' ''MainViewModel'
(HashCode=3910657)'. BindingExpression:Path=ViewName;
DataItem='MainViewModel' (HashCode=3910657); target element is 'TextBox'
(Name='NameTextBox'); target property is 'Text' (type 'String')

Let's take a closer look at this error. The plain English translation for this would be as
follows:

There is no public property named ViewName in the object of
type MainViewModel with a HashCode value of 3910657.
The error was raised from a Binding.Path value that was specified as
ViewName, which was set on the Text property of a TextBox instance named
NameTextBox

This could be rewritten with descriptive names rather than specific details, like this:

System.Windows.Data Error: 40 : BindingExpression path error:
'PropertyOfBindingSource' property not found on 'object'
''TypeOfBindingSource' (HashCode=HashCodeOfBindingSource)'.
BindingExpression:Path=UsedBindingPath; DataItem='TypeOfBindingSource'
(HashCode=HashCodeOfBindingSource); target element is 'TypeOfBindingTarget'
(Name='NameOfBindingTarget'); target property is
'PropertyOfBindingTarget' (type 'TypeOfBindingTargetProperty')

Debugging WPF Applications Chapter 2

[36]

Now that we have our 'key' to explain what these values represent, we can see that they are
really very descriptive. Not only are we provided with the name of the data bound UI
control, if it is set, and the used binding path, but also the type of the data source, along
with the hash code of the actual instance of that type that is being used.

These errors highlight the mistakes that have been made in the XAML files. The type of
errors displayed in this window will include incorrectly labeled binding paths, such as
using non-existent property names, or otherwise invalid binding source paths. While it
won't catch every problem, there is a way to make it output additional information that
could help us to track down our more elusive problems. In order to do this, first display the
Options dialog window. Navigate to Tools | Options | Debugging | Output Window |
WPF Trace Settings.

Here, you can find a number of options, each with a variable level of output: Animation,
Data Binding, Dependency Properties, Documents, Freezable, HWND Hosting, Markup,
Name Scope, Resource Dictionaries, and Routed Events. The various levels of output and
their meanings are as follows:

Critical: Enables tracing of Critical events only
Error: Enables tracing of Critical and Error events
Warning: Enables tracing of Critical, Error, and Warning events
Information: Enables tracing of Critical, Error, Warning, and Information events
Verbose: Enables tracing of Critical, Error, Warning, Information, and Verbose
events
ActivityTracing: Enables tracing of Stop, Start, Suspend, Transfer, and Resume
events

It is fairly common to permanently have the Data Binding option set to Warning or Error,
with the other options set to Off. The general rule of thumb when using these options is to
use the minimum level required, except when trying to find problems, because they will
slow down the running of the application. It should be noted, however, that this extra
debug trace output will not affect Release builds at all.

If you set the Data Binding entry to an output of Verbose or All and look in the Output
window when running your application, you will understand why it will negatively affect
performance. Even when not displaying this debug information in the Output window, the
WPF Framework will still be performing a great number of checks when there are binding
errors. It is, therefore, very important to clear up all errors and warnings that are displayed,
to minimize the amount of work that the Framework does when trying to resolve them.

Debugging WPF Applications Chapter 2

[37]

Putting Presentation Trace Sources to work
As useful as it is, there are certain occasions when using the Output window will not
suffice. Perhaps we have far too much output to look through now and would like to view
it on the way home from work, or maybe we need to see this kind of debug trace
information after our application has been deployed. In these cases and others, it's time to
enable the WPF Presentation Trace Sources.

There are a number of different trace sources that we can employ to output detailed tracing
data for us. The choice is the same as that found in the WPF Trace Settings options and, in
fact, after setting the values there, the Output window has already been showing us the
debug trace output.

By default, WPF uses a DefaultTraceListener object to send the information to the
Output window, but we can override that and/or configure the output to be sent to a text
and/or XML file instead or as well.

In order to do this, we need to alter our app.config file, which is found in the root folder
of our startup project. We'll need to add a system.diagnostics section and within it, add
sources, switches, and sharedlisteners elements. The switches element holds the
switch that determines the output level, as specified in the previous section.

The sharedlisteners element specifies which kind of output we want to utilize. The
three types are:

System.Diagnostics.ConsoleTraceListener: Sends the traces to the
Output window
System.Diagnostics.TextWriterTraceListener: Outputs to a text file
System.Diagnostics.XmlWriterTraceListener: Outputs to an XML file

Finally, we need to add a source element for each trace source that we want to listen to,
and specify which switch and listener we want to use with it. Therefore, we are able to
output different trace sources to different media and with different levels of output. These
trace sources are the same as those found in the WPF Trace Settings options, although in
the configuration file, we need to specify their full names.

The choices are as follows:

System.Windows.Media.Animation

System.Windows.Data

System.Windows.DependencyProperty

System.Windows.Documents

Debugging WPF Applications Chapter 2

[38]

System.Windows.Freezable

System.Windows.Interop.HwndHost

System.Windows.Markup

System.Windows.NameScope

System.Windows.ResourceDictionary

System.Windows.RoutedEvent

System.Windows.Shell

Let's see an example configuration file:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6.1" />
 </startup>
 <system.diagnostics>
 <sources>
 <source name="System.Windows.Data" switchName="Switch">
 <listeners>
 <add name="TextListener" />
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="Switch" value="All" />
 </switches>
 <sharedListeners>
 <add name="TextListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="Trace.txt" />
 </sharedListeners>
 <trace indentsize="4" autoflush="true"></trace>
 </system.diagnostics>
</configuration>

Focusing on the system.diagnostics section from the example, we see that there is one
source element that is specifying the System.Windows.Data source (for data binding
information), the switch named Switch, and the TextListener listener. Looking first in
the switches section, we find the switch named Switch and note that it is set with an
output level of All.

Debugging WPF Applications Chapter 2

[39]

Below this, in the sharedlisteners element, we see the listener named TextListener.
This listener is of type System.Diagnostics.TextWriterTraceListener and this
outputs to a text file which is specified by the value of the initializeData attribute. We
end with a trace element that sets the tab size of the text document to four spaces and
ensures that data is flushed out of the buffer after each write to prevent trace data from
being lost due to a crash.

To set a less verbose output, we can simply alter the switch to use one of the other levels of
output, as follows:

<add name="Switch" value="Error" />

As mentioned earlier, WPF can use a DefaultTraceListener object to send trace
information to the Output window when particular options are set in Visual Studio. The
name of this listener is Default. In order to stop the default behavior of this
DefaultTraceListener, we can remove it using our source element, as follows:

<source name="System.Windows.Data" switchName="Switch">
 <listeners>
 <add name="TextListener" />
 <remove name="Default" />
 </listeners>
</source>

It's good to be aware of this fact, because if we also configured our own
ConsoleTraceListener object, we could end up with our Output window duplicating
trace events. However, it is also possible to add multiple listeners into each source element
if required:

<source name="System.Windows.Data" switchName="Switch">
 <listeners>
 <add name="TextListener" />
 <add name="OutputListener" />
 </listeners>
</source>

We can also add different listeners for different sources:

<source name="System.Windows.Data" switchName="Switch">
 <listeners>
 <add name="TextListener" />
 </listeners>
</source>
<source name="System.Windows.DependencyProperty" switchName="Switch">
 <listeners>
 <add name="OutputListener" />

Debugging WPF Applications Chapter 2

[40]

 </listeners>
</source>
...
<sharedListeners>
 <add name="TextListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="Trace.txt" />
 <add name="OutputListener"
 type="System.Diagnostics.ConsoleTraceListener" />
</sharedListeners>

Different output levels for different sources can be added as follows:

<source name="System.Windows.Data" switchName="ErrorSwitch">
 <listeners>
 <add name="TextListener" />
 </listeners>
</source>
<source name="System.Windows.DependencyProperty" switchName="AllSwitch">
 <listeners>
 <add name="OutputListener" />
 </listeners>
</source>
...
<switches>
 <add name="AllSwitch" value="All" />
 <add name="ErrorSwitch" value="Error" />
</switches>

One neat feature that WPF Presentation Trace Sources provide is the ability to create our
own custom trace sources:

<source name="CompanyName.ApplicationName" switchName="Switch">
 <listeners>
 <add name="TextListener" />
 </listeners>
</source>

Note that the DefaultTraceListener was already configured to send information to the
Output window in the WPF Trace Settings options mentioned in the previous section, so
the traces from this source will also be sent to the Output window automatically. If you
have not set those options but want to view the trace output there, then you will need to
manually add a reference to the ConsoleTraceListener to this source as shown in the
preceding code snippets.

Debugging WPF Applications Chapter 2

[41]

In the code, we are now able to output custom trace information to this source:

TraceSource traceSource = new TraceSource("CompanyName.ApplicationName");
traceSource.TraceEvent(TraceEventType.Information, eventId, "Data loaded");
// Alternative way to output information with an event id of 0
traceSource.TraceInformation("Data loaded");

To specify different levels of importance, we use the TraceEventType enumeration:

traceSource.TraceEvent(TraceEventType.Error, eventId, "Data not loaded");

After outputting the debug information, we can optionally flush the existing listeners to
ensure that they receive the events in the buffers before continuing:

traceSource.Flush();

Finally, we need to ensure that we close the TraceSource object to free resources when we
have outputted the necessary information:

traceSource.Close();

The best part of this tracing functionality is the fact that we can turn it on and off using the
configuration file, either at design time, runtime, or even on production versions of the
application. As the configuration file is basically a text file, we can manually edit it and then
restart the application so that it reads the new configuration.

Imagine that we had two switches in our file and that our default configuration used the
switch named OffSwitch, so that there was no tracing output:

<source name="CompanyName.ApplicationName" switchName="OffSwitch">
 <listeners>
 <add name="TextListener" />
 </listeners>
</source>
...
<switches>
 <add name="AllSwitch" value="All" />
 <add name="OffSwitch" value="Off" />
</switches>

Debugging WPF Applications Chapter 2

[42]

Now imagine that we have deployed our application and it is installed on a user's
computer. It's worth noting at this point that the actual deployed configuration file that is
created from the app.config file will have the same name as the executable file. In our
case, it would be named CompanyName.ApplicationName.exe.config and would
reside in the same folder as the executable file.

If this installed application was not behaving correctly, we could locate this configuration
file, and simply change the switch to the one named AllSwitch:

<source name="CompanyName.ApplicationName" switchName="AllSwitch">
 <listeners>
 <add name="TextListener" />
 </listeners>
</source>

After restarting the application, the new configuration would be read and our custom
traces would be written to the specified text file. One alternative to restarting the
application would be to call the Refresh method of the Trace class, which has the same
effect of initiating a new read of the configuration file:

Trace.Refresh();

This method call can even be connected to a menu item or other UI control to enable tracing
to be turned on and off without having to restart the application. Using either of these
methods of refreshing the configuration file, we can attain important debug information
from our software, even when it is in production. However, great care should be taken to
ensure that text or XML file tracing is not permanently enabled on released software, as it
will negatively affect performance.

While the WPF Presentation Trace Sources are typically available by default these days, in a
few cases, we may need to manually enable this tracing functionality by adding the
following registry key:

HKEY_CURRENT_USER\Software\Microsoft\Tracing\WPF

Once the WPF registry key has been added, we need to add a new DWORD value to it, name it
ManagedTracing, and set its value to 1. We should then have access to the WPF
Presentation Trace Sources. We've now seen a number of ways of finding the information
that we need at runtime, but what about if the application won't even run?

Debugging WPF Applications Chapter 2

[43]

Discovering inner exceptions
When we are building the content of our Views, we often make the odd typographical
mistake here and there. Perhaps, we mistype the name of one of our properties in a binding
path, or copy and paste some code that references other code that we have not copied.

At first, it may appear to be quite difficult to find the source of these types of errors,
because when we run our application, the actual error that is raised by Visual Studio is
usually of type XamlParseException and bares no direct relation to the actual error. The
additional information provided is also of little help. Here is a typical example:

Debugging WPF Applications Chapter 2

[44]

Let's investigate this further. We can see that the additional information supplied here says:

'Provide value on 'System.Windows.Markup.StaticResourceHolder' threw an exception.'
Line number '48' and line position '41'.

Now let's try to break this down to some meaningful information. Firstly, it is clear that the
exception was thrown by the System.Windows.Markup.StaticResourceHolder class.
By itself, this information is not very useful, but at least we know that the problem has
something to do with a StaticResource that could not be resolved.

The next bit of information that we can gather from this message is that the problem
occurred on line 48 and position 41. However, without informing us of which file this
relates to, this information is also not very useful. The Exception dialog window shown in
the preceding screenshot will often have a line pointing to the line and position in the
current file, which can also be another red herring. In this particular case, it was indeed
false information as there was no error there, but at least that tells us that the problem has
not arisen from the current file.

The trick to finding out what caused the real problem that occurred is for us to click the
View Detail... link in the window. This will open the View Detail window, where we can
see all of the property values of XamlParseException. Looking at the StackTrace and
TargetSite property values won't help in the way that they usually do with normal
exceptions. However, if we open up and inspect the InnerException property value, we
can finally find out what actually happened.

Debugging WPF Applications Chapter 2

[45]

Let's do that with our example:

Debugging WPF Applications Chapter 2

[46]

At last, we have something that we can work with. The InnerException.Message
property value states: "Cannot find resource named 'BaseButtonStyle'.
Resource names are case sensitive".

Therefore, our offending object references the BaseButtonStyle style. A quick search for
'BaseButtonStyle' through the solution files in Visual Studio will locate the source of the
problem. In this case, our problem lay in the Application.Resources section of the
App.xaml file. Let's take a closer look:

<Style x:Key="SmallButtonStyle" TargetType="{x:Type Button}"
 BasedOn="{StaticResource BaseButtonStyle}">
 <Setter Property="Height" Value="24" />
 <Setter Property="Width" Value="24" />
</Style>

Here we can see a style that is based on another style, but the base style is apparently
missing. It is this missing base style that is the StaticResource named
BaseButtonStyle that caused this error. We can fix this problem easily by either creating
the referenced base style in the App.xml file, or by removing the BasedOn property from
the SmallButtonStyle style.

We should always bear in mind that errors like these will most likely reside in the code that
we have just been editing, so that also helps us to narrow down the search. It is therefore
beneficial to run the application often when implementing XAML that may contain errors,
as the more code we write between checking our progress, the more code we need to look
through to find the problem.

Debugging data bound values
So far, we have seen that we can utilize a number of sources of information to help with
tracking down the causes of our problems. However, what about actual debugging? In
other GUI languages, we can add breakpoints at various locations in our code and watch
our values changing as we step through our code. While we can also do this with WPF
applications, it is not always so obvious where to put our breakpoints to ensure that
program execution will hit them.

Debugging WPF Applications Chapter 2

[47]

If you remember from the previous chapter, the CommandManager.RequerySuggested
event is raised when CommandManager detects a change in the UI that could reflect on
whether a command could execute or not. Well, it turns out that two of the conditions that
the CommandManager looks out for is when the application window is either activated or
deactivated and we can take advantage of this to help us when debugging. Note that the
application window is deactivated when the user moves focus from it and is reactivated
when the user returns focus to it.

Therefore, while running the application side by side with Visual Studio, we can put a
breakpoint in any method that is being used as a canExecute handler for our
ActionCommand class, thereby removing focus from the application. Now, when we click
back on the WPF application, the focus will be returned to it.

This will cause the CommandManager.RequerySuggested event to be raised and as a
result, the canExecute handler will be called and our breakpoint will be hit. This basically
means that we are able to get the program execution into our View Models to debug
parameter values any and every time that we need to. Let's see what else we can do to help
fix our data binding errors.

Outputting values to UI controls
One of the simplest ways of working out what values our data bound properties have is to
just data bind them to other UI controls that have a textual output. For example, if we have
a collection of items and we want to do something with the selected item, but whatever that
is isn't working, we need to verify that our binding to that selected item is correct.

To visualize the result of the binding, we can simply copy and paste the binding path to the
Text property of a TextBox and run the application. If our binding path is correct, we'll see
something output in the TextBox and if not, we'll know that the problem that we're having
is, in fact, down to the binding path. We can, therefore, use this method to verify that
objects that don't normally have a textual output are at least correctly data bound or not.

This simple technique can help in any situation where the faulty data binding is not already
rendered in a text-based UI control. For example, we might need to debug a data bound
value because a particular visual effect that is created with a DataTrigger instance is not
working and we need to determine whether the problem is related to the UI control or the
data binding path.

Debugging WPF Applications Chapter 2

[48]

Catching changing Dependency Property values
As we saw at the beginning of this chapter, the WPF Framework won't call the CLR
property wrappers of our Dependency Properties when the property values are changing.
However, there is a way to accomplish this using callback handlers. In fact, we've already
seen an example of this when we were looking at the creation of the
OnEnterKeyDown Attached Property. Let's remind ourselves what that looked like:

public static DependencyProperty OnEnterKeyDownProperty =
 DependencyProperty.RegisterAttached("OnEnterKeyDown",
 typeof(ICommand), typeof(TextBoxProperties),
 new PropertyMetadata(OnOnEnterKeyDownChanged));

...

public static void OnOnEnterKeyDownChanged(
 DependencyObject dependencyObject, DependencyPropertyChangedEventArgs e)
{
 TextBox textBox = (TextBox)dependencyObject;
 if (e.OldValue == null && e.NewValue != null)
 textBox.PreviewKeyDown += TextBox_OnEnterKeyDown;
 else if (e.OldValue != null && e.NewValue == null)
 textBox.PreviewKeyDown -= TextBox_OnEnterKeyDown;
}

For this Attached Property, we used a particular overload of the
DependencyProperty.RegisterAttached method that accepts a PropertyMetadata
object, which enabled us to assign a PropertyChangedCallback handler to the property.
Note that there is an identical overload for the DependencyProperty.Register method
for declaring Dependency Properties.

Program execution will enter these PropertyChangedCallback handlers each time their
related Dependency Property changes, so that makes them perfect for debugging their
values. While we don't often need to attach these handlers, it only takes a moment to add
one when we need to and they enable us to find out what's going on with the Dependency
Property values at runtime.

Debugging WPF Applications Chapter 2

[49]

Exploiting converters
If we're having a problem with a data binding that uses an IValueConverter to convert
the data bound value from one type to another, then we can place a breakpoint into the
Convert method of the converter. As long as we have correctly set up the converter, we
can be sure that the breakpoint will be hit when the binding is evaluated at runtime. If it
doesn't get hit, that will mean that we have not set it up correctly.

However, even when we are not already using a converter on a binding that is not
displaying the value that we are expecting, we can still add one just for this purpose. We
can either add an existing converter to the binding, if we have one of the relevant type, or
we can create a simple converter specifically for the purpose of debugging and use that
instead. Let's take a look at how we might do this:

[ValueConversion(typeof(object), typeof(object))]
public class DebugConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 if (Debugger.IsAttached) Debugger.Break();
 return value;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (Debugger.IsAttached) Debugger.Break();
 return value;
 }
}

As you can see from the preceding code snippet, it's a very simple implementation of the
IValueConverter interface. We start by specifying that we are converting from object to
object in the ValueConversion attribute, thereby outlining that we are not actually
converting any data bound values in this converter. The rest of the class represents a typical
converter class, but without any conversion code.

The only real point of interest here are the two calls to the Debugger.Break method from
the System.Diagnostics assembly. When the program execution reaches either of these
method calls, it will automatically break, just as if there were breakpoints set on these lines.
Therefore, when using this converter, we don't even need to set breakpoints; we can just
plug it into the binding, run the program, and investigate the value of the value input
parameter.

Debugging WPF Applications Chapter 2

[50]

It can be attached like any other converter:

xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters"
...
<UserControl.Resources>
 <Converters:DebugConverter x:Key="Debug" />
</UserControl.Resources>
...
<ListBox ItemsSource="{Binding Items, Converter={StaticResource Debug}}" />

However, this method can be unsafe to use in a production environment and the converter
should be removed when debugging is finished. If it is left connected in release code, an
Exception will be thrown at runtime, complaining that Windows has encountered a user-
defined breakpoint. Although I wouldn't recommend leaving a converter that is just used
for debugging data bound values connected in a production environment, we can make a
slight alteration to it to completely eliminate the danger of this occurring:

[ValueConversion(typeof(object), typeof(object))]
public class DebugConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 Break(value);
 return value;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 Break(value);
 return value;
 }

 [Conditional("DEBUG")]
 private void Break(object value)
 {
 Debugger.Break();
 }
}

Debugging WPF Applications Chapter 2

[51]

Now, the Debugger.Break method and the data bound value have been moved into a
separate Break method, where the value of the value input parameter can be inspected.
Note the use of the ConditionalAttribute attribute on this new method. It provides a
way to include or exclude methods that it has been set on, depending on the current
solution configuration. If the configuration is set to debug, this method can be called, but
otherwise, all calls to it are removed from the compiled code. In this way, we can be
assured that we will not run into problems with our release code.

Summary
In this chapter, we've investigated the best ways to track down our coding problems. We've
looked at the various debug tracing outputs that we have access to and even discovered
how to output our own custom trace information. We discovered that the exceptions that
are thrown in WPF often hide their useful information in their InnerException
properties. Finally, we found out a number of tips and tricks to use when trying to find
errors with our data bound values.

The next chapter delves deeply into the subject of application frameworks and we get
started on constructing our own. We find out about the benefit of base classes and discover
alternative ways to implement our framework functionality. The chapter will finish off by
investigating a variety of techniques to ensure that our applications maintain the essential
Separation of Concerns that MVVM provides.

3
Writing Custom Application

Frameworks
In this chapter, we will investigate application frameworks and the benefits that they can
bring us. We find out the differences between providing this functionality via base classes
and interfaces and also discover other ways to build functionality into our frameworks. We
will then use this newfound knowledge to begin to construct our own application
framework to streamline our future application development. The chapter will finish off by
inspecting a variety of techniques to ensure that our applications maintain the essential
Separation of Concerns that MVVM provides.

What is an application framework?
In the simplest terms, an application framework is comprised of a library of classes that,
together, provide the most common functionality required by an application. By using an
application framework, we can vastly reduce the amount of work and time that is required
to create the various parts of the application. In short, they support the future development
of the application.

In typical three-tier applications, the framework often extends through all layers of the
application; the Presentation Layer, the Business Layer, and the Data Access Layer. In a
WPF application using the MVVM pattern, we can, therefore, see aspects of the application
framework in all three components of the pattern; the Models, the View Models, and the
Views.

Apart from the obvious benefits of the reduced production times and effort involved in
creating our application components, application frameworks also provide many
additional benefits. Typical application frameworks promote reusability, which is one of
the core aims of Object-Oriented Programming (OOP). They do this by providing generic
interfaces and/or base classes that can be used to define the various application
components.

Writing Custom Application Frameworks Chapter 3

[53]

By reusing these application framework interfaces and base classes, we also instill a sense
of uniformity and consistency throughout the application. Furthermore, as these
frameworks generally provide additional functionality, or services, the developers working
on the application can save further time when requiring this particular functionality.

Concepts like modularity, maintainability, testability, and extensibility can also be realized
by using an application framework. These frameworks often come with the ability to run
individual components independently of each other and this fits WPF and the MVVM
pattern extremely well. Additionally, application frameworks can also supply patterns of
implementation to further simplify the process of constructing new application
components.

Different frameworks are created for different technologies and WPF already have a few
publicly available. Some are relatively lightweight, like the MVVM Light Toolkit and the
WPF Application Framework (WAF), while others are more heavyweight, like
Caliburn.Micro and the now open source Prism. While it is likely that you may have used
one or more of these frameworks at work, instead of investigating these in this chapter,
we'll look at how to create our own lightweight custom framework, that will implement
just the features that we need.

Encapsulating common functionality
Probably the most commonly used interface in any WPF application would be the
INotifyPropertyChanged interface, as it is required to correctly implement data binding.
By providing an implementation of this interface in our base class, we can avoid having to
repeatedly implement it in every single View Model class. It is, therefore, a great candidate
for inclusion in our base class. There are a number of different ways to implement it
depending on our requirements, so let's take a look at the most basic first:

public virtual event PropertyChangedEventHandler PropertyChanged;

protected virtual void NotifyPropertyChanged(string propertyName)
{
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
}

Writing Custom Application Frameworks Chapter 3

[54]

In all forms of this implementation, we first need to declare the PropertyChanged event.
This is the event that will be used to notify the various binding sources and targets of
changes to the data bound values in our application. Note that this is the only requirement
of the INotifyPropertyChanged interface. There is no NotifyPropertyChanged
method that we have to implement, so you may well come across differently named
methods that perform the same functionality.

Of course, without the method, just implementing the event would do nothing. The basic
idea of this method is that as usual, we first check for null, and then raise the event,
passing the raising class instance as the sender parameter and the name of the property
that changed in the PropertyChangedEventArgs. We have already seen that the null
conditional operator in C# 6.0 provides us with a shorthand notation for this:

PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));

Note that the declared access modifier on this method is protected, to ensure that all
View Models that derive from this base class will have access to it, while non-deriving
classes will not. Furthermore, the method is also marked as virtual, so that the derived
classes can override this functionality if required. In the View Models, this method would
be called from a property like this:

private string name = string.Empty;

public string Name
{
 get { return name; }
 set
 {
 if (name != value)
 {
 name = value;
 NotifyPropertyChanged("Name");
 }
 }
}

Writing Custom Application Frameworks Chapter 3

[55]

However, a new attribute was added in .NET 4.5, that gives us a shortcut to use with this
implementation. The CallerMemberNameAttribute class enables us to automatically
obtain the name of the method caller, or more specifically in our case, the name of the
property that called the method. We can use it with an optional input parameter with a
default value, like this:

protected virtual void NotifyPropertyChanged(
 [CallerMemberName]string propertyName = "")
{
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
}

The calling property can then be simplified to this:

public string Name
{
 get { return name; }
 set { if (name != value) { name = value; NotifyPropertyChanged(); } }
}

It's worth noting at this point that in .NET 4.5.3, another improvement to calling the most
basic implementation of this method was introduced. The nameof operator also enables us
to avoid using strings to pass the property name, as passing strings can be error prone. This
operator basically converts the name of a property, variable, or method to a string
at compile time, so the end result is exactly the same as passing the string, but less error
prone when renaming definitions. Using the preceding property as an example, let's see
how this operator is used:

NotifyPropertyChanged(nameof(Name));

There are also other tricks that we can employ too. For example, we often need to notify the
Framework that more than one property value has changed at once. Visualize a scenario
where we have two properties named Price and Quantity, and a third property named
Total. As you can imagine, the value of the Total property will come from the calculation
of the Price value multiplied by the Quantity value:

public decimal Total
{
 get { return Price * Quantity; }
}

Writing Custom Application Frameworks Chapter 3

[56]

However, this property has no setter, so where should we call the NotifyPropertyChanged
method from? The answer is simple. We need to call it from both of the constituent property
setters, as they can both affect the resulting value of this property.

Traditionally, we would have to call the NotifyPropertyChanged method once for each
constituent property and once for the Total property. However, it is possible to rewrite
our implementation of this method to enable us to pass multiple property names to it in a
single call. For this, we can make use of the params keyword to enable any number of input
parameters:

protected void NotifyPropertyChanged(params string[] propertyNames)
{
 if (PropertyChanged != null)
 {
 foreach (string propertyName in propertyNames)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

When using the params keyword, we need to declare an array type input parameter.
However, this array merely holds the input parameters and we do not need to supply an
array when calling this method. Instead, we provide any number of input parameters of the
same type and they will be implicitly added to the array. Going back to our example, this
enables us to call the method like this:

private decimal price = 0M;

public decimal Price
{
 get { return price; }
 set
 {
 if (price != value)
 {
 price = value;
 NotifyPropertyChanged(nameof(Price), nameof(Total));
 }
 }
}

Writing Custom Application Frameworks Chapter 3

[57]

We therefore have a variety of different ways to implement this method, depending on
what suits our requirements. We can even add a number of overloads of the method to
provide the users of our framework with more choices. We'll see a further enhancement to
this method later, but for now, let's see what our BaseViewModel class might look like so
far:

using System.ComponentModel;
using System.Runtime.CompilerServices;
namespace CompanyName.ApplicationName.ViewModels
{
 public class BaseViewModel : INotifyPropertyChanged
 {
 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void NotifyPropertyChanged(
 params string[] propertyNames)
 {
 if (PropertyChanged != null)
 {
 foreach (string propertyName in propertyNames)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
 }

 protected virtual void NotifyPropertyChanged(
 [CallerMemberName]string propertyName = "")
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

 #endregion
 }
}

To summarize, we started with an interface that declared a single event. The interface itself
provides no functionality and in fact, we as the implementers, have to provide the
functionality, in the form of the NotifyPropertyChanged method and the calling of that
method each time a property value changes. But the reward for doing this is that the UI
controls are listening and responding to those events and so, by implementing this
interface, we have gained this additional data binding capability.

Writing Custom Application Frameworks Chapter 3

[58]

However, we can provide functionality in our application framework in a number of
different ways. The two main ways are through the use of base classes and interfaces. The
main difference between these two approaches relate to the amount of development that
the users of our framework will have to accomplish in order to create the various
application components.

When we use interfaces, we are basically supplying a contract that the developers will have
to honor, by providing the implementation themselves. However, when we use base
classes, we are able to provide that implementation for them. So generally, base classes
provide ready-written functionality, whereas interfaces rely on the developers to provide
some or all of that functionality for themselves.

We've just seen an example of implementing an interface in our View Model base class.
Let's now take a look at what else we can encapsulate in our other framework base classes
and compare the differences between providing features or functionality in base classes and
interfaces. Let's turn our attention to our Data Model classes now.

In base classes
We have seen that in a WPF application, it is essential for us to have an implementation of
the INotifyPropertyChanged interface in our View Model base class. Likewise, we will
also need a similar implementation in our Data Model base class. Remember that when
Data Models are mentioned here, we are discussing the business Model classes that are
combined with the View Model properties and functionality from the second application
structure example in Chapter 1, A Smarter Way of Working with WPF.

All of these DataModel classes will need to extend their base class because they will all
need to have access to its INotifyPropertyChanged implementation. As we progress
through the chapters in this book, we will see more and more reasons why we need
separate base classes for our Data Models and View Models. For example, let's imagine that
we want to provide these Data Models with some simple auditing properties and
investigate what our base class might look like:

using System;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace CompanyName.ApplicationName.DataModels
{
 public class BaseDataModel : INotifyPropertyChanged
 {
 private DateTime createdOn;
 private DateTime? updatedOn;

Writing Custom Application Frameworks Chapter 3

[59]

 private User createdBy, updatedBy;

 public DateTime CreatedOn
 {
 get { return createdOn; }
 set { createdOn = value; NotifyPropertyChanged(); }
 }

 public User CreatedBy
 {
 get { return createdBy; }
 set { createdBy = value; NotifyPropertyChanged(); }
 }

 public DateTime? UpdatedOn
 {
 get { return updatedOn; }
 set { updatedOn = value; NotifyPropertyChanged(); }
 }

 public User UpdatedBy
 {
 get { return updatedBy; }
 set { updatedBy = value; NotifyPropertyChanged(); }
 }

 #region INotifyPropertyChanged Members
 ...
 #endregion
 }
}

Here, we see our auditing properties, along with the hidden INotifyPropertyChanged
implementation that we saw earlier. For now, let's keep the implementation the same as
that of the BaseViewModel class. Note that using this particular base class would result in
all derived classes getting access to these properties, whether they needed them or not.

We might then decide to declare another base class, so that we can have one that provides
access to our implementation of the INotifyPropertyChanged interface and one that
extends that base class and adds the new auditable properties shown earlier. In this way, all
derived classes can make use of the INotifyPropertyChanged interface implementation
and the classes that require the auditable properties as well can be derived from the second
base class:

Writing Custom Application Frameworks Chapter 3

[60]

For this basic example, we seem to have solved our problem. If these auditable properties
were the only properties that we wanted to provide to our derived classes, then this would
not be such a bad situation. However, an average a framework will typically provide far
more than this.

Let's now imagine that we wanted to provide some basic undo capability. We'll see an
example of this later in this chapter, but for now we'll keep this simple. Without actually
specifying the required members of this new base class, let's just think about this first.

Now we have a situation where we already have two different base classes and we want to
provide some further functionality. Where should we declare our new properties? We could
derive from either one, or indirectly, from both of the existing base classes, as shown in the
following diagram, in order to create this new synchronizable base class:

Writing Custom Application Frameworks Chapter 3

[61]

So now, we could have four different base classes that the developers, that use our
framework could extend. There could be some confusion as to exactly which base class they
need to extend, but overall, this situation is still just about manageable. However, imagine
if we want to provide some additional properties or functionality in one or more levels of
base class.

In order to enable every combination of functionality from these base classes, we could end
up with as many as eight separate base classes. Each additional level of functionality that
we provide will either double the total number of base classes that we have, or mean
that the developers sometimes have to derive from a base class with functionality or
properties that they do not require. Now that we have uncovered a potential problem of
utilizing base classes, let's see if declaring interfaces can help with this situation.

Through interfaces
Going back to our auditing example, we could have declared these properties in an
interface instead. Let's see what this might look like:

using System;

namespace CompanyName.ApplicationName.DataModels.Interfaces
{
 public interface IAuditable
 {
 DateTime CreatedOn { get; set; }

 User CreatedBy { get; set; }

 DateTime? UpdatedOn { get; set; }

 User UpdatedBy { get; set; }
 }
}

Now, if a developer requires these properties, they can implement this interface as well as
extending the Data Model base class:

Writing Custom Application Frameworks Chapter 3

[62]

Let's see an example of this in code now:

using System;
using CompanyName.ApplicationName.DataModels.Interfaces;

namespace CompanyName.ApplicationName.DataModels
{
 public class Invoice : BaseDataModel, IAuditable
 {
 private DateTime createdOn;
 private DateTime? updatedOn;
 private User createdBy, updatedBy;

 public DateTime CreatedOn
 {
 get { return createdOn; }
 set { createdOn = value; NotifyPropertyChanged(); }
 }

 public User CreatedBy
 {
 get { return createdBy; }
 set { createdBy = value; NotifyPropertyChanged(); }
 }

 public DateTime? UpdatedOn
 {
 get { return updatedOn; }
 set { updatedOn = value; NotifyPropertyChanged(); }
 }

 public User UpdatedBy

Writing Custom Application Frameworks Chapter 3

[63]

 {
 get { return updatedBy; }
 set { updatedBy = value; NotifyPropertyChanged(); }
 }
 }
}

Initially then, it seems as though this could be a better way to go, but let's continue to
investigate the same scenario that we looked at with the base classes. Let's now imagine
that we want to provide the same basic undo capability using interfaces. We didn't actually
investigate which members would be required for this, but it will require both properties
and methods.

This is where the interface approach starts to break down somewhat. We can ensure that
implementers of our ISynchronization interface have particular properties and methods,
but we have no control over their implementation of those methods. In order to provide the
ability to undo changes, we need to provide the actual implementation of these methods,
rather than just the required scaffolding.

If this was left up to the developers to implement each time they used the interface, they
might not implement it correctly, or perhaps they might implement it differently in
different classes and break the consistency of the application. Therefore, to implement some
functionality, it seems as though we really do need to use some kind of base class.

However, we also have a third option that involves a mix of the two approaches. We could
implement some functionality in a base class, but instead of deriving our Data Model
classes from it, we could add a property of that type to them, so that they can still access its
public members.

We could then declare an interface that simply has a single property of the type of this new
base class. In this way, we would be free to add the different functionality from different
base classes to just the classes that require them. Let's look at an example of this:

public interface IAuditable
{
 Auditable Auditable { get; set; }
}

Writing Custom Application Frameworks Chapter 3

[64]

This Auditable class would have the same properties as those in the previous
IAuditable interface shown in the preceding code. The new IAuditable interface would
be implemented by the Data Model classes by simply declaring a property of
type Auditable :

public class User : IAuditable
{
 private Auditable auditable;

 public Auditable Auditable
 {
 get { return auditable; }
 set { auditable = value; }
 }
 ...
}

It could be used by the framework, for example, to output the names of each user and when
they were created into a report. In the following example, we use the Interpolated Strings
syntax that was introduced in C# 6.0 for constructing our string. It's like the
string.Format method, but with the method call replaced with a $ sign and the
numerical format items replaced with their related values:

foreach (IAuditable user in Users)
{
 Report.AddLine($"Created on {user.Auditable.CreatedOn}" by
 {user.Auditable.CreatedBy.Name});
}

Most interestingly, as this interface could be implemented by many different types of
object, the preceding code could also be used with objects of different types. Note this slight
difference:

List<IAuditable> auditableObjects = GetAuditableObjects();
foreach (IAuditable user in auditableObjects)
{
 Report.AddLine($"Created on {user.Auditable.CreatedOn}" by
 {user.Auditable.CreatedBy.Name});
}

It's worth pointing out this useful ability to work with objects of different types is not
limited to interfaces. This can also be achieved just as easily with base classes. Imagine a
View that enabled the end user to edit a number of different types of object.

Writing Custom Application Frameworks Chapter 3

[65]

If we added a property named PropertyChanges, that returned details of changed
properties, into the BaseSynchronizableDataModel class that we will see later, in
the Constructing a custom application framework section, we could use this very similar code
to display a confirmation of the changes from each object back to the user:

List<BaseSynchronizableDataModel> baseDataModels = GetBaseDataModels();
foreach (BaseSynchronizableDataModel baseDataModel in baseDataModels)
{
 if (baseDataModel.HasChanges)
 FeedbackManager.Add(baseDataModel.PropertyChanges);
}

We have a number of choices when it comes to encapsulating pieces of pre-packaged
functionality into our Data Model classes. Each of these methods that we have investigated
so far have strengths and weaknesses. If we're sure that we want some pre-written
functionality in every one of our Data Model classes, like that of the
INotifyPropertyChanged interface, then we can simply encapsulate it in a base class and
derive all of our Model classes from that.

If we just want our Models to have certain properties or methods that can be called from
other parts of the framework, but are not concerned with the implementation, then we can
use interfaces. If we want some combination of the two ideas, then we can implement a
solution using the two methods together. It is up to us to choose the solution that best fits
the requirements in hand.

With Extension Methods
There is a further method of providing additional functionality to the developers of our
application that was mentioned when investigating the application structures in
the Chapter 2, Debugging WPF Applications. It is through the use of Extension Methods. If
you are not familiar with this amazing .NET feature, Extension Methods enable us to write
methods that can be used on objects that we did not create.

At this stage, it's worth pointing out that we don't generally write Extension Methods for
classes that we have declared. There are two main reasons for this. The first is that we
created these classes and so we have access to their source code and can therefore simply
declare new methods in these classes directly.

The second reason is that there will be a reference to our Extensions project added to
most other projects, including our DataModels project, so that they can all take advantage
of the extra capabilities. Therefore, we can't add references to any of our other projects into
the Extensions project, because it would create circular dependencies.

Writing Custom Application Frameworks Chapter 3

[66]

You are probably aware of Extension Methods already, although perhaps inadvertently, as
most of the LINQ methods are Extension Methods. Once declared, they can be used just
like the ordinary methods that were declared within the various classes that we are
extending, although they are differentiated by having different icons in the Visual Studio
IntelliSense display:

The basic principle when declaring them is to have a static class, where each method has an
extra input parameter prefixed with the this keyword, that represents the object being
extended. Note that this extra input parameter must be declared first in the parameter list
and that it will not be visible in IntelliSense when calling the method on an instance of an
object.

Extension Methods are declared as static methods, but are typically called using instance
method syntax. A simple example should help to clarify this situation. Let's imagine that
we want to be able to call a method on each item in a collection. In fact, we'll see an
example of this being used in our BaseSynchronizableCollection class later in this
chapter, but now, let's see how we can do this:

using System;
using System.Collections.Generic;

namespace CompanyName.ApplicationName.Extensions
{
 public static class IEnumerableExtensions
 {
 public static void ForEach<T>(this IEnumerable<T> collection,
 Action<T> action)
 {
 foreach (T item in collection) action(item);
 }
 }
}

Here, we see the this input parameter that specifies the instance of the target type that this
Extension Method is called on. Remember that this won't appear in the parameter list in
IntelliSense in Visual Studio, unless it is called through the static class itself, as shown in the
following code:

IEnumerableExtensions.ForEach(collection, i => i.RevertState());

Writing Custom Application Frameworks Chapter 3

[67]

Inside this method, we simply iterate through the collection items, calling the Action
specified by the action input parameter and passing in each item as its parameter. After
adding a using directive to the CompanyName.ApplicationName.Extensions
namespace, let's see how this method is more usually called:

collection.ForEach(i => i.PerformAction());

So, you can now see the power of Extension Methods and the benefits that they can bring
us. If some functionality that we want is not already provided by a certain class in the .NET
Framework, then we can simply add it. Take this next example.

Here is an Extension Method that has been sorely missed from the existing LINQ Extension
Methods. As with the other LINQ methods, this one also works on the IEnumerable<T>
interface and, therefore, also any collection that extends it:

public static IEnumerable<TSource> DistinctBy<TSource, TKey>(
 this IEnumerable<TSource> source, Func<TSource, TKey> keySelector)
{
 HashSet<TKey> keys = new HashSet<TKey>();
 foreach (TSource element in source)
 {
 if (keys.Add(keySelector(element))) yield return element;
 }
}

Let's first look at the declaration of this method. We can see that our source collection will
be of type TSource. Note that this is exactly the same as if the generic type parameter were
named T, like in our other examples, except that this provides a little more detail as to the
use of this type parameter. This naming has come from the
Enumerable.OrderBy<TSource, TKey> method, where type TSource parameter
represents our source collection.

Next, we notice that the method name is suffixed by two generic type parameters; first, the
TSource parameter, and then the TKey parameter. This is because we require two generic
type parameters for the input parameter of type Func<TSource, TKey>. If you're not
familiar with the Func<T, TResult> delegate, as Microsoft calls it, it simply encapsulates
any method that has a single input parameter of type T and returns a value of type
TResult, or, in our case, TKey.

Writing Custom Application Frameworks Chapter 3

[68]

"Why are we using this Func<T, TResult> delegate?", I hear you asking. Well, it's simple
really; using this class, we can provide the developers with an object of the same type as
those in the source collection and the ability to select a member of that class, in particular,
the property that they want to perform the distinct query on. Before looking at the rest of
this method, let's see it in use:

IEnumerable<User> distinctUsers = Users.DistinctBy(u => u.Id);

Let's envisage that we had a collection of User objects that had all purchased items. This
collection could contain the same User object more than once, if they purchased more than
one item. Now, let's imagine that we wanted to compile a collection of unique users from
the original collection, so as not to send multiple bills to people that ordered multiple items.
This method would return a single member for each distinct Id value.

Referring back to the source code for this method, the User class represents the TSource
parameter and this is shown in the Lambda expression in the example as the u input
parameter. The TKey parameter is determined by the type of the class member that is
selected by the developer, in this case, by the Guid Id value. This example could be written
slightly differently to make it clearer:

IEnumerable<User> distinctUsers = Users.DistinctBy((User user) => user.Id);

So, our Func<TSource, TKey> can be seen here, with a User input parameter and a Guid
return value. Now, let's focus on the magic of our method. We see a HashSet of type
Guid in our case being initialized. This type of collection is essential to this method, as it
allows only unique values to be added.

Next, we iterate through our source collection, of type User in this case, and attempt to add
the relevant property value of each item in the collection into the HashSet. In our case,
we're adding the values of the identities of each User object into this HashSet.

If the identity value is unique and the HashSet<T>.Add method returns true, we yield, or
return that item from our source collection. The second and each subsequent time that a
used Id value is read, it is rejected. This means that only the first items with unique
identity values are returned from this method. Note that in this example, we are not
interested in the purchases, but in the unique users that made them.

We've now managed to create our very own LINQ-style Extension Method. However, not
all of our Extension Methods need to be so ground breaking. Often, they can be used to
simply encapsulate some commonly used functionality.

Writing Custom Application Frameworks Chapter 3

[69]

In a way, we can use them as simple convenience methods. Take a look at the following
example that is used in the With Converters section later in this chapter:

using System;
using System.ComponentModel;
using System.Reflection;

namespace CompanyName.ApplicationName.Extensions
{
 public static class EnumExtensions
 {
 public static string GetDescription(this Enum value)
 {
 FieldInfo fieldInfo = value.GetType().GetField(value.ToString());
 if (fieldInfo == null) return Enum.GetName(value.GetType(), value);
 DescriptionAttribute[] attributes = (DescriptionAttribute[])
 fieldInfo.GetCustomAttributes(typeof(DescriptionAttribute), false);
 if (attributes != null && attributes.Length > 0)
 return attributes[0].Description;
 return Enum.GetName(value.GetType(), value);
 }
 }
}

In this method, we attempt to get the FieldInfo object that relates to the instance of the
relevant enumeration provided by the value input parameter. If the attempt fails, we
simply return the name of the particular instance. If we succeed however, we then use the
GetCustomAttributes method of that object, passing the type of the
DescriptionAttribute class, to retrieve an array of attributes.

If we have declared a value in the DescriptionAttribute of this particular enumeration
instance, then it will always be the first item in the attribute array. If we have not set a
value, then the array will be empty and we return the name of the instance instead. Note
that as we used the base Enum class in this method, we are able to call this method on any
enumeration type.

When creating these methods, it should be noted that there is no requirement to put them
into separate classes that are split by type, as we have done here. There are no specified
naming conventions either and, in fact, it is also totally viable to put all of your Extension
Methods into a single class. However, if we have a large number of Extension Methods of a
particular type, then it can help with maintenance to have this separation.

Writing Custom Application Frameworks Chapter 3

[70]

Before moving on, let's take a look at one final example of these Extension Methods. One of
the most useful traits of an Extension Method is the ability to add new or missing
functionality to existing classes from the .NET Framework. For example, let's see how we
can replicate Linq and define a simple Count method for the IEnumerable class:

public static int Count(this IEnumerable collection)
{
 int count = 0;
 foreach (object item in collection) count++;
 return count;
}

As we can see, this method requires little explanation. It literally just counts the number of
items in the IEnumerable collection and returns that value. As simple as it is, it proves to
be useful, as we'll see in a later example. Now that we have investigated Extension
Methods, let's turn our attention to another way of building further abilities into our
framework, this time focusing on the Views component.

In UI controls
One another common way to include functionality in an application framework is to
encapsulate it into custom controls. In doing so, we can expose the required functionality
using Dependency Properties, while hiding the implementation details. This is also another
great way to promote reusability and consistency throughout the application. Let's take a
look at a simple example of a UserControl that wraps the functionality of the
System.Windows.Forms.FolderBrowserDialog control:

<UserControl
 x:Class="CompanyName.ApplicationName.Views.Controls.FolderPathEditField"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls="clr-
namespace:CompanyName.ApplicationName.Views.Controls">
 <TextBox Name="FolderPathTextBox"
 Text="{Binding FolderPath, RelativeSource={RelativeSource
 AncestorType={x:Type Controls:FolderPathEditField}}, FallbackValue='',
 UpdateSourceTrigger=PropertyChanged}" Cursor="Arrow"
 PreviewMouseLeftButtonUp="TextBox_PreviewMouseLeftButtonUp" />
</UserControl>

Writing Custom Application Frameworks Chapter 3

[71]

This simple UserControl just contains a textbox with its Text property data bound to the
FolderPath Dependency Property that is declared in our control's code behind.
Remember that it is perfectly acceptable to use the code behind of a UserControl for this
purpose when using MVVM. Note that we have used a RelativeSource binding here
because nothing has been set to this control's DataContext property. We'll find out much
more about data binding in Chapter 4, Becoming Proficient with Data Binding, but for now,
let's continue.

You may notice that we have attached a handler for the PreviewMouseLeftButtonUp
event in the code behind and as no business-related code is being used there, this is also
perfectly acceptable when using MVVM. The only other notable code here is that we set the
Cursor property to show an arrow when users mouse over our control. Let's now take a
look at the code behind of the UserControl and see how the functionality is encapsulated:

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using FolderBrowserDialog = System.Windows.Forms.FolderBrowserDialog;

namespace CompanyName.ApplicationName.Views.Controls
{
 public partial class FolderPathEditField : UserControl
 {
 public FolderPathEditField()
 {
 InitializeComponent();
 }

 public static readonly DependencyProperty FolderPathProperty =
 DependencyProperty.Register(nameof(FolderPath),
 typeof(string), typeof(FolderPathEditField),
 new FrameworkPropertyMetadata(string.Empty,
 FrameworkPropertyMetadataOptions.BindsTwoWayByDefault));

 public string FolderPath
 {
 get { return (string)GetValue(FolderPathProperty); }
 set { SetValue(FolderPathProperty, value); }
 }

 public static readonly DependencyProperty OpenFolderTitleProperty =
 DependencyProperty.Register(nameof(OpenFolderTitle),
 typeof(string), typeof(FolderPathEditField),
 new FrameworkPropertyMetadata(string.Empty,
 FrameworkPropertyMetadataOptions.BindsTwoWayByDefault));

Writing Custom Application Frameworks Chapter 3

[72]

 public string OpenFolderTitle
 {
 get { return (string)GetValue(OpenFolderTitleProperty); }
 set { SetValue(OpenFolderTitleProperty, value); }
 }

 private void TextBox_PreviewMouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 if (((TextBox)sender).SelectedText.Length == 0 &&
 e.GetPosition(this).X <= ((TextBox)sender).ActualWidth -
 SystemParameters.VerticalScrollBarWidth)
 ShowFolderPathEditWindow();
 }

 private void ShowFolderPathEditWindow()
 {
 string defaultFolderPath = string.IsNullOrEmpty(FolderPath) ?
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)
 : FolderPath;
 string folderPath = ShowFolderBrowserDialog(defaultFolderPath);
 if (string.IsNullOrEmpty(folderPath)) return;
 FolderPath = folderPath;
 }

 private string ShowFolderBrowserDialog(string defaultFolderPath)
 {
 using (FolderBrowserDialog folderBrowserDialog =
 new FolderBrowserDialog())
 {
 folderBrowserDialog.Description = OpenFolderTitle;
 folderBrowserDialog.ShowNewFolderButton = true;
 folderBrowserDialog.SelectedPath = defaultFolderPath;
 folderBrowserDialog.ShowDialog();
 return folderBrowserDialog.SelectedPath;
 }
 }
 }
}

We start with our using directives and see an example of a using alias directive. In this
case, we don't want to add a normal using directive for the System.Windows.Forms
assembly because it contains many UI-related classes that have names that clash with those
in the required System.Windows assembly.

Writing Custom Application Frameworks Chapter 3

[73]

To avoid these conflicts, we can create an alias for the single type that we are interested in
using from that assembly. To clarify, Microsoft decided not to reinvent the wheel, or, in this
case, the FolderBrowserDialog control, in the System.Windows assembly, and so we
need to add a reference to the System.Windows.Forms assembly and use the one
from there.

Looking at this class, we see that much of this code is taken up with the declarations of the
Dependency Properties of the control. We have the FolderPath property that will hold the
file path of the folder that is selected from the Windows.Forms control, and the
OpenFolderTitle property that will populate the title bar of the FolderBrowserDialog
window when displayed.

Next, we see the TextBox_PreviewMouseLeftButtonUp event handler that handles the
PreviewMouseLeftButtonUp event of the single TextBox element in our control. In this
method, we first verify that the user is not selecting text from, or scrolling, the TextBox
control and then, if true, we call the ShowFolderPathEditWindow method.

In order to verify that the user is not selecting text, we simply check the length of the
SelectedText property of the TextBox control. In order to confirm that the user is not
scrolling the TextBox control, we compare the relative horizontal position of the user's
click with the length of the TextBox element minus the width of its vertical scroll bar to
ensure that their mouse is not over the scroll bar, if present.

The ShowFolderPathEditWindow method first prepares to display the Windows.Forms
control. It sets the defaultFolderPath variable to either the current value of the
FolderPath property, if one is set, or the current user's Documents folder, using the
Environment.GetFolderPath method and the
Environment.SpecialFolder.MyDocuments enumeration.

It then calls the ShowFolderBrowserDialog method to launch the actual
FolderBrowserDialog control and retrieve the selected folder path. If a valid folder path
is selected, we set its value to the data bound FolderPath property directly, but note that
we could have set it in other ways.

It would be very easy to add an ICommand property to our control in order to return the
selected folder path instead of using this direct assignment. This could be useful in cases
where we don't want the data bound value to be set instantly; for example, if the control
was used in a child window that needed a confirmation button to be clicked before the data
bound value could be updated.

Writing Custom Application Frameworks Chapter 3

[74]

The ShowFolderBrowserDialog method wraps the use of the FolderBrowserDialog
class in a using statement, to ensure that it is disposed of, once it has been used. It utilizes
the defaultFolderPath variable and the OpenFolderTitle property when setting up
the actual FolderBrowserDialog control. Note that this OpenFolderTitle property is
simply here to demonstrate how we can expose the required properties from the
FolderBrowserDialog element in our control. In this way, we can encapsulate the use of
the Windows.Forms control and assembly within our control.

Note that we could have added extra Dependency Properties to enable the users of our
framework to have further control over the settings in the FolderBrowserDialog control.
In this basic example, we simply hardcoded a positive value for the
FolderBrowserDialog.ShowNewFolderButton property, but we could have exposed
that as another property.

We could have also added a browse button and maybe even a clear button to clear the
selected folder value. We could have then added additional bool Dependency Properties to
control whether those buttons should be displayed or not. There are many other ways that
we could improve this control, but it still demonstrates how we can encapsulate
functionality into our Views components. We'll see another View-related way to capture
little snippets of functionality in the following section.

With converters
Converters are yet another way that we can package up useful functionality in our
framework. We've already seen a useful example of the IValueConverter interface in
Chapter 2, Debugging WPF Applications, but while that was a very simple example,
converters can actually be very versatile.

Long before Microsoft introduced their BooleanToVisibilityConverter class,
developers had to create their own versions. We often need to convert the
UIElement.Visibility enumeration to or from a variety of different types, and so it is a
good idea to start with a BaseVisibilityConverter class that can serve multiple
converter classes. Let's see what that entails:

using System.Windows;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 public abstract class BaseVisibilityConverter
 {
 public enum FalseVisibility { Hidden, Collapsed }

Writing Custom Application Frameworks Chapter 3

[75]

 protected Visibility FalseVisibilityValue { get; set; } =
 Visibility.Collapsed;

 public FalseVisibility FalseVisibilityState
 {
 get { return FalseVisibilityState == Visibility.Collapsed ?
 FalseVisibility.Collapsed : FalseVisibility.Hidden; }
 set { FalseVisibilityState = value == FalseVisibility.Collapsed ?
 Visibility.Collapsed : Visibility.Hidden; }
 }

 public bool IsInverted { get; set; }
 }
}

This converter requires one value to represent the visible value and as there is only one
corresponding value in the UIElement.Visibility enumeration, that will clearly be the
Visibility.Visible instance. It also requires a single value to represent the invisible
value.

As such, we declare the FalseVisibility enumeration with the two corresponding
values from the UIElement.Visibility enumeration and the FalseVisibilityValue
property to enable users to specify which value should represent the false state. Note that
the most commonly used Visibility.Collapsed value is set as the default value.

Users can set the FalseVisibilityState property when using the control and this sets
the protected FalseVisibilityValue property internally. Finally, we see the
indispensable IsInverted property that is optionally used to invert the result. Let's see
what our BoolToVisibilityConverter class looks like now:

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 [ValueConversion(typeof(bool), typeof(Visibility))]
 public class BoolToVisibilityConverter : BaseVisibilityConverter,
 IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (value == null || value.GetType() != typeof(bool))
 return DependencyProperty.UnsetValue;

Writing Custom Application Frameworks Chapter 3

[76]

 bool boolValue = IsInverted ? !(bool)value :(bool)value;
 return boolValue ? Visibility.Visible : FalseVisibilityValue;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (value == null || value.GetType() != typeof(Visibility))
 return DependencyProperty.UnsetValue;
 if (IsInverted) return (Visibility)value != Visibility.Visible;
 return (Visibility)value == Visibility.Visible;
 }
 }
}

We start by specifying the data types involved in the implementation of the converter in the
ValueConversion attribute. This helps tools to know what types are being used in the
converter, but also makes it clear to the users of our framework. Next, we extend our
BaseVisibilityConverter base class and extend the required IValueConverter
interface.

In the Convert method, we first check the validity of our value input parameter, if valid,
we convert it to a bool variable, taking the IsInverted property setting into
consideration. We return the DependencyProperty.UnsetValue value for invalid input
values. Finally, we resolve the output value from this bool variable to either the
Visibility.Visible instance, or the value of the FalseVisibilityValue property.

In the ConvertBack method, we also check the validity of our value input parameter first.
We return the DependencyProperty.UnsetValue value for invalid input values again,
otherwise we output a bool value that specifies whether the input parameter of
type Visibility is equal to the Visibility.Visible instance, while again taking the
value of the IsInverted property into consideration.

Note that use of the IsInverted property enables users to specify that elements should
become visible when the data bound bool value is false. This can be incredibly useful
when we want to have one object visible upon a certain condition and another object
hidden dependent upon the same condition. We can declare two converters from this class
like this:

xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters"
...
<Converters:BoolToVisibilityConverter x:Key="BoolToVisibilityConverter" />
<Converters:BoolToVisibilityConverter
 x:Key="InvertedBoolToVisibilityConverter" IsInverted="True" />

Writing Custom Application Frameworks Chapter 3

[77]

As stated, we often need to convert to and from the UIElement.Visibility enumeration
from a variety of different types. Let's now look at an example of a conversion to and from
the Enum type. The principle is the same as the last example, where a single data bound
value represents the Visibility.Visible instance and all other values represent the
hidden or collapsed state:

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 [ValueConversion(typeof(Enum), typeof(Visibility))]
 public class EnumToVisibilityConverter : BaseVisibilityConverter,
 IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (value == null || (value.GetType() != typeof(Enum) &&
 value.GetType().BaseType != typeof(Enum)) ||
 parameter == null) return DependencyProperty.UnsetValue;
 string enumValue = value.ToString();
 string targetValue = parameter.ToString();
 bool boolValue = enumValue.Equals(targetValue,
 StringComparison.InvariantCultureIgnoreCase);
 boolValue = IsInverted ? !boolValue : boolValue;
 return boolValue ? Visibility.Visible : FalseVisibilityValue;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (value == null || value.GetType() != typeof(Visibility) ||
 parameter == null) return DependencyProperty.UnsetValue;
 Visibility usedValue = (Visibility)value;
 string targetValue = parameter.ToString();
 if (IsInverted && usedValue != Visibility.Visible)
 return Enum.Parse(targetType, targetValue);
 else if (!IsInverted && usedValue == Visibility.Visible)
 return Enum.Parse(targetType, targetValue);
 return DependencyProperty.UnsetValue;
 }
 }
}

Writing Custom Application Frameworks Chapter 3

[78]

Again, we start by specifying the data types involved in the implementation of the
converter in the ValueConversion attribute. In the Convert method, we first check the
validity of our value input parameter, if valid, we convert it to the string representation
of the value. This particular class uses the parameter input parameter to pass the specified
enumeration instance that will represent the visible value, and so it is set to the
targetValue variable as a string.

We then create a bool value by comparing the current enumeration instance with the target
instance. Once we have our bool value, the last two lines replicate those in the
BoolToVisibilityConverter class.

The ConvertBack method implementation is somewhat different. Logically speaking, we
are unable to return the correct enumeration instance for a hidden visibility, as it could be
any value except the visible value passed through the parameter input parameter.

As such, we are only able to return that specified value if the element is visible and the
IsInverted property is false, or if it is not visible and the IsInverted property is true.
For all other input values, we simply return the DependencyProperty.UnsetValue
property to state that there is no value.

Another incredibly useful thing that converters can do is to convert individual enumeration
instances to particular images. Let's look at an example that relates to our
FeedbackManager, or, more accurately, the Feedback objects that get displayed. Each
Feedback object can have a particular type that is specified by the FeedbackType
enumeration, so let's look at that first:

namespace CompanyName.ApplicationName.DataModels.Enums
{
 public enum FeedbackType
 {
 None = -1,
 Error,
 Information,
 Question,
 Success,
 Validation,
 Warning
 }
}

Writing Custom Application Frameworks Chapter 3

[79]

To make this work, we obviously need a suitable image for each enumeration instance,
except for the None instance. Our images will reside in a folder named Images in the root
folder of the startup project:

using CompanyName.ApplicationName.DataModels.Enums;
using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;
using System.Windows.Media;

namespace CompanyName.ApplicationName.Converters
{
 [ValueConversion(typeof(FeedbackType), typeof(ImageSource))]
 public class FeedbackTypeToImageSourceConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (!(value is FeedbackType feedbackType) ||
 targetType != typeof(ImageSource))
 return DependencyProperty.UnsetValue;
 string imageName = string.Empty;
 switch ((FeedbackType)value)
 {
 case FeedbackType.None: return null;
 case FeedbackType.Error: imageName = "Error_16"; break;
 case FeedbackType.Success: imageName = "Success_16"; break;
 case FeedbackType.Validation:
 case FeedbackType.Warning: imageName = "Warning_16"; break;
 case FeedbackType.Information: imageName = "Information_16"; break;
 case FeedbackType.Question: imageName = "Question_16"; break;
 default: return DependencyProperty.UnsetValue;
 }
 return $"pack://application:,,,/CompanyName.ApplicationName;
 component/Images/{ imageName }.png";
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 return DependencyProperty.UnsetValue;
 }
 }
}

Writing Custom Application Frameworks Chapter 3

[80]

Once again, we start by specifying the data types involved in the converter in the
ValueConversion attribute. In the Convert method, we use C# 6.0 Pattern Matching to
check the validity of our value input parameter and to cast it to a FeedbackType instance,
if valid. We then use that in a switch statement, to generate the relevant image name for
each enumeration instance.

If an unknown instance is used, we return the DependencyProperty.UnsetValue value.
In all other cases, we use String Interpolation to build up the full file path of the relevant
image and then return it from the converter as the converted value. As the ConvertBack
method in this converter has no valid use, it is not implemented and simply returns the
DependencyProperty.UnsetValue value.

You may have noticed that we specified type ImageSource in the ValueConversion
attribute, but we returned a string. This is possible because XAML uses the relevant type
converter to convert the string into an ImageSource object automatically for us. Exactly
the same thing occurs when we set an Image.Source property with a string in XAML.

As with other parts of our framework, we can make our converters even more useful, when
we combine functionality from other areas. In this particular example, we utilize one of the
Extension Methods that was shown earlier in this chapter. To remind you, the
GetDescription method will return the value of the DescriptionAttribute that is set
on each enumeration instance.

The DescriptionAttribute enables us to associate any string value with each of our
enumeration instances, so this is a great way to output a user-friendly description for each
instance. An example of this would be as follows:

using System.ComponentModel;

public enum BitRate
{
 [Description("16 bits")]
 Sixteen = 16,
 [Description("24 bits")]
 TwentyFour = 24,
 [Description("32 bits")]
 ThirtyTwo = 32,
}

Writing Custom Application Frameworks Chapter 3

[81]

In this way, instead of displaying the names of the instances in a RadioButton control, for
example, we could display the more humanized descriptions from these attributes. Let's
have a look at this converter class now:

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.Converters
{
 [ValueConversion(typeof(Enum), typeof(string))]
 public class EnumToDescriptionStringConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (value == null || (value.GetType() != typeof(Enum) &&
 value.GetType().BaseType != typeof(Enum)))
 return DependencyProperty.UnsetValue;
 Enum enumInstance = (Enum)value;
 return enumInstance.GetDescription();
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 return DependencyProperty.UnsetValue;
 }
 }
}

As we're now accustomed to doing, we start by specifying the data types used in the
converter in the ValueConversion attribute. In the Convert method, we again check the
validity of our value input parameter and return the DependencyProperty.UnsetValue
value if it is invalid.

If it is valid, we cast it to a Enum instance and then use the power of our Extension Method
to return the value from each instance's DescriptionAttribute. In doing so, we are able
to expose this functionality to our Views and to enable the users of our framework to utilize
it directly from the XAML. Now that we have a general understanding of the various ways
that we can encapsulate functionality into our framework, let's focus on starting
construction of our base classes.

Writing Custom Application Frameworks Chapter 3

[82]

Constructing a custom application
framework
There will be different requirements for different components, but typically, the properties
and functionality that we build into our Data Model base classes will be utilized and made
more useful by our other base classes, so let's start by looking at the various Data Model
base classes first.

One thing that we need to decide is whether we want any of our Data Model base classes to
be generic or not. The difference can be subtle, but important. Imagine that we want to add
some basic undo functionality into a base class. One way that we can achieve this would be
to add an object into the base class that represents the unedited version of the Data Model.
In an ordinary base class, it would look like this:

public abstract class BaseSynchronizableDataModel : BaseDataModel
{
 private BaseSynchronizableDataModel originalState;

 public BaseSynchronizableDataModel OriginalState
 {
 get { return originalState; }
 private set { originalState = value; }
 }
}

In a generic base class, it would look like this:

public abstract class BaseSynchronizableDataModel<T> : BaseDataModel
{
 private T originalState;

 public T OriginalState
 {
 get { return originalState; }
 private set { originalState = value; }
 }
}

To make this property more useful, we'll need to add some further methods. First, we'll see
the non-generic versions:

public abstract void CopyValuesFrom(BaseSynchronizableDataModel dataModel);

public virtual BaseSynchronizableDataModel Clone()
{

Writing Custom Application Frameworks Chapter 3

[83]

 BaseSynchronizableDataModel clone =
 Activator.CreateInstance(this.GetType()) as
BaseSynchronizableDataModel;
 clone.CopyValuesFrom(this);
 return clone;
}

public abstract bool PropertiesEqual(BaseSynchronizableDataModel
dataModel);

Now, let's look at the generic versions:

public abstract void CopyValuesFrom(T dataModel);

public virtual T Clone()
{
 T clone = new T();
 clone.CopyValuesFrom(this as T);
 return clone;
}

public abstract bool PropertiesEqual(T dataModel);

The last few members of this base class would be the same for both versions:

public bool HasChanges
{
 get { return originalState != null && !PropertiesEqual(originalState); }
}

public void Synchronize()
{
 originalState = this.Clone();
 NotifyPropertyChanged(nameof(HasChanges));
}

public void RevertState()
{
 Debug.Assert(originalState != null, "Object not yet synchronized.");
 CopyValuesFrom(originalState);
 Synchronize();
 NotifyPropertyChanged(nameof(HasChanges));
}

Writing Custom Application Frameworks Chapter 3

[84]

We started with the OriginalState property which holds the unedited version of the
Data Model. After that, we see the abstract CopyValuesFrom method that the developers
will need to implement and we'll see an example of that implementation shortly. The Clone
method simply calls the CopyValuesFrom method in order to perform a deep clone of the
Data Model.

Next, we have the abstract PropertiesEqual method that the developers will need to
implement in order to compare each property in their classes with those from the
dataModel input parameter. Again, we'll see this implementation shortly, but you may be
wondering why we don't just override the Equals method, or implement the
IEquatable.Equals method for this purpose.

The reason why we don't want to use either of those methods is because they, along with
the GetHashCode method, are used by the WPF Framework in various places and they
expect the returned values to be immutable. As our object's properties are very much
mutable, they cannot be used to return the values for those methods. Therefore, we have
implemented our own version. Now, let's return to the description of the remainder of this
code.

The HasChanges property is the property that we would want to data bind to a UI control
to indicate whether a particular object had been edited. The Synchronize method sets a
deep clone of the current Data Model to the originalState field and, importantly,
notifies the WPF Framework of a change to the HasChanges property. This is done because
the HasChanges property has no setter of its own and this operation will affect its value.

It is very important that we set a cloned version to the originalState field, rather than
simply assigning the actual object reference to it. This is because we need to have a
completely separate version of this object to represent the unedited version of the Data
Model. If we simply assigned the actual object reference to the originalState field, then
its property values would change along with the Data Model object and render it useless
for this feature.

The RevertState method first checks that the Data Model has been synchronized and
then copies the values back from the originalState field to the Model. Finally, it calls the
Synchronize method to specify that this is the new, unedited version of the object and
notifies the WPF Framework of a change to the HasChanges property.

Writing Custom Application Frameworks Chapter 3

[85]

So, as you can see, there are not many differences between these two versions of the base
class. In fact, the differences can be seen more clearly in the implementation of the derived
classes. Let's now focus on their implementations of the example abstract methods, starting
with the non-generic versions:

public override bool PropertiesEqual(BaseClass genreObject)
{
 Genre genre = genreObject as Genre;
 if (genre == null) return false;
 return Name == genre.Name && Description == genre.Description;
}

public override void CopyValuesFrom(BaseClass genreObject)
{
 Debug.Assert(genreObject.GetType() == typeof(Genre), "You are using
 the wrong type with this method.");
 Genre genre = (Genre)genreObject;
 Name = genre.Name;
 Description = genre.Description;
}

Before discussing this code, let's first see the generic implementations:

public override bool PropertiesEqual(Genre genre)
{
 return Name == genre.Name && Description == genre.Description;
}

public override void CopyValuesFrom(Genre genre)
{
 Name = genre.Name;
 Description = genre.Description;
}

At last, we can see the difference between using generic and non-generic base classes.
Without using generics, we have to use base class input parameters, which will need to be
cast to the appropriate type in each of the derived classes before we can access their
properties. Attempting to cast inappropriate types causes Exceptions, so we generally try to
avoid these situations.

On the other hand, when using a generic base class, there is no need to cast, as the input
parameters are already of the correct type. In short, generics enable us to create type-safe
Data Models and avoid duplicating type specific code. Now that we have seen the benefit
of using generic classes, let's take a pause from generics for a moment and look at this base
class a bit closer.

Writing Custom Application Frameworks Chapter 3

[86]

Some of you may have noticed that the only places where the WPF Framework is notified
of changes to our HasChanges property is in the Synchronize and RevertState
methods. However, in order for this functionality to work properly, we need to notify the
framework every time the values of any properties are changed.

We could rely on the developers to call the NotifyPropertyChanged method, passing the
HasChanges property name each time they call it for each property that changes, but if
they forgot to do this, it could lead to errors that could be difficult for them to track down.
Instead, a better solution would be for us to override the default implementation of the
INotifyPropertyChanged interface from the base class and notify changes to the
HasChanges property for them each time it is called:

#region INotifyPropertyChanged Members

protected override void NotifyPropertyChanged(
 params string[] propertyNames)
{
 if (PropertyChanged != null)
 {
 foreach (string propertyName in propertyNames)
 {
 if (propertyName != nameof(HasChanges)) PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 PropertyChanged(this,
 new PropertyChangedEventArgs(nameof(HasChanges)));
 }
}

protected override void NotifyPropertyChanged(
 [CallerMemberName]string propertyName = "")
{
 if (PropertyChanged != null)
 {
 if (propertyName != nameof(HasChanges)) PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 PropertyChanged(this,
 new PropertyChangedEventArgs(nameof(HasChanges)));
 }
}

#endregion

Writing Custom Application Frameworks Chapter 3

[87]

The first method will raise the PropertyChanged event, passing the name of the
HasChanges property just once, regardless of how many property names were passed to
the method. The second method also performs a check to ensure that it will refrain from
raising the event with the HasChanges property name more than once, so these
implementations remain efficient.

Now, our base class will work as expected and the HasChanges property will correctly
update when other properties in the Data Model classes are changed. This technique can
also be utilized in other scenarios; for example, when validating our property values, as
we'll see later in Chapter 9, Implementing Responsive Data Validation. For now though, let's
return to see what else we can achieve with generics.

Another area where generics are often used relates to collections. I'm sure that you're all
aware that we tend to use the ObservableCollection<T> class in WPF applications
because of its INotifyCollectionChanged and INotifyPropertyChanged
implementations. It is customary, but not essential, to extend this class for each type of Data
Model class that we have:

public class Users : ObservableCollection<User>

However, instead of doing this, we can declare a BaseCollection<T> class that extends
the ObservableCollection<T> class and adds further functionality into our framework
for us. The users of our framework can then extend this class instead:

public class Users : BaseCollection<User>

One really useful thing that we can do is to add a generic property of type T into our base
class, that which will represent the currently selected item in a data bound collection
control in the UI. We could also declare some delegates to notify developers of changes to
either selection or property values. There are so many shortcuts and helper methods that
we can provide here, dependent on requirements, so it's worth spending some time
investigating this. Let's take a look at a few possibilities:

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Linq;
using System.Runtime.CompilerServices;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.DataModels.Collections
{
 public class BaseCollection<T> :
 ObservableCollection<T>, INotifyPropertyChanged
 where T : class, INotifyPropertyChanged, new()

Writing Custom Application Frameworks Chapter 3

[88]

 {
 protected T currentItem;

 public BaseCollection(IEnumerable<T> collection) : this()
 {
 foreach (T item in collection) Add(item);
 }

 public BaseCollection(params T[] collection) :
 this(collection as IEnumerable<T>) { }

 public BaseCollection() : base()
 {
 currentItem = new T();
 }

 public virtual T CurrentItem
 {
 get { return currentItem; }
 set
 {
 T oldCurrentItem = currentItem;
 currentItem = value;
 CurrentItemChanged?.Invoke(oldCurrentItem, currentItem);
 NotifyPropertyChanged();
 }
 }

 public bool IsEmpty
 {
 get { return !this.Any(); }
 }

 public delegate void ItemPropertyChanged(T item,
 string propertyName);

 public virtual ItemPropertyChanged CurrentItemPropertyChanged
 { get; set; }

 public delegate void CurrentItemChange(T oldItem, T newItem);
 public virtual CurrentItemChange CurrentItemChanged { get; set; }

 public T GetNewItem()
 {
 return new T();
 }

 public virtual void AddEmptyItem()

Writing Custom Application Frameworks Chapter 3

[89]

 {
 Add(new T());
 }

 public virtual void Add(IEnumerable<T> collection)
 {
 collection.ForEach(i => base.Add(i));
 }

 public virtual void Add(params T[] items)
 {
 if (items.Length == 1) base.Add(items[0]);
 else Add(items as IEnumerable<T>);
 }

 protected override void InsertItem(int index, T item)
 {
 if (item != null)
 {
 item.PropertyChanged += Item_PropertyChanged;
 base.InsertItem(index, item);
 if (Count == 1) CurrentItem = item;
 }
 }

 protected override void SetItem(int index, T item)
 {
 if (item != null)
 {
 item.PropertyChanged += Item_PropertyChanged;
 base.SetItem(index, item);
 if (Count == 1) CurrentItem = item;
 }
 }

 protected override void ClearItems()
 {
 foreach (T item in this)
 item.PropertyChanged -= Item_PropertyChanged;
 base.ClearItems();
 }

 protected override void RemoveItem(int index)
 {
 T item = this[index];
 if (item != null) item.PropertyChanged -= Item_PropertyChanged;
 base.RemoveItem(index);
 }

Writing Custom Application Frameworks Chapter 3

[90]

 public void ResetCurrentItemPosition()
 {
 if (this.Any()) CurrentItem = this.First();
 }

 private void Item_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
 {
 if ((sender as T) == CurrentItem)
 CurrentItemPropertyChanged?.Invoke(currentItem, e.PropertyName);
 NotifyPropertyChanged(e.PropertyName);
 }

 #region INotifyPropertyChanged Members
 ...
 #endregion
 }
}

There's quite a lot to digest here, so let's go over each part carefully. We start with our
private member of type T that will back our CurrentItem property. We then find a few
overloads of the constructor that enable us to initialize our collection from either a
collection, or any number of input parameters of the relevant type.

Next, we see the CurrentItem property from Chapter 1, A Smarter Way of Working with
WPF, again, but now with some further context. If a class has subscribed to the
CurrentItemChanged property, we will call the delegate from here, passing both the new
and old values of the current item. The IsEmpty property is just an efficient convenience
property for our developers to call when they need to know whether the collection has any
content or not.

After this, we see the collection delegates and the relevant property wrappers that enable
the developers that will use our framework to make use of them. Next, we see the
convenient GetNewItem and AddEmptyItem methods, which both generate a new item of
the T generic type parameter, before returning or adding them to the collection,
respectively. This is the reason that we needed to add the new() generic type constraint to
the class definition; this type constraint specifies that the generic type used must have a
parameterless constructor.

And now we reach the various Add methods of the collection; note that every way to add
an item to the collection must be handled, so that we can attach our
Item_PropertyChanged handler to the PropertyChanged event of each added item to
ensure consistent behavior.

Writing Custom Application Frameworks Chapter 3

[91]

We therefore call our Add methods from all other overloads and helper methods and call
the base Collection.Add method from there. Note that we actually attach our handler
inside the protected InsertItem method, as this overridden method is called from the Add
methods in the Collection class.

Likewise, the protected SetItem method will be called by the Collection class when
items are set using the index notation, so we must handle that too. Similarly, when items
are removed from the collection, it is equally, if not more, important to remove the
reference to our event handler from each object. Failing to do so can result in memory leaks,
as the reference to the event handler can keep the Data Model objects from being disposed
by the garbage collector.

As such, we also need to handle every method of removing objects from our collection. To
do this, we override a few more protected methods from the Collection base class. The
ClearItems method will be called internally when users call the Clear method on our
collection. Equally, the RemoveItem method will be called when users call any of the public
removal methods, so it is the optimal place to remove our handler.

Skipping the ResetCurrentItemPosition method for now, at the bottom of the class, we
reach the Item_PropertyChanged event handling method. If the item that has had the
property changed is the current item in the collection, then we raise the
ItemPropertyChanged delegate that is connected with the
CurrentItemPropertyChanged property.

For every property change notification, regardless of whether the item is the current item or
not, we then raise the INotifyPropertyChanged.PropertyChanged event. This enables
developers that use our framework to be able to attach a handler to the PropertyChanged
event directly on our collections and to be able to discover when any property has been
changed on any of the items in the collection.

You may also have noticed a few places in the collection class code where we set the value
of the CurrentItem property. The option chosen here is to always select the first item in
the collection automatically, but it would be a simple change to have the last item selected
instead, for example. As always, these kinds of details will depend on your specific
requirements.

Another benefit of declaring these base collection classes is that we can utilize the
properties and extend the functionality that is built into our base Data Model classes.
Thinking back to the simple example of our BaseSynchronizableDataModel class, let's
see what we could add into a new base collection class to improve this functionality.

Writing Custom Application Frameworks Chapter 3

[92]

Before we can do this however, we need to be able to specify that the objects in our new
collection have implemented the properties and methods from the
BaseSynchronizableDataModel class. One option would be to declare our new
collection class like this:

public class BaseSynchronizableCollection<T> : BaseCollection<T>
 where T : BaseSynchronizableDataModel<T>

However, in C#, we can only extend a single base class, while we are free to implement as
many interfaces as we like. A more preferable solution would therefore be for us to extract
the relevant synchronization properties from our base class into an interface, and then add
that to our base class definition:

public abstract class BaseSynchronizableDataModel<T> :
 BaseDataModel, ISynchronizableDataModel<T>
 where T : BaseDataModel, ISynchronizableDataModel<T>, new()

We could then specify this new generic constraint on our new collection class like this:

public class BaseSynchronizableCollection<T> : BaseCollection<T>
 where T : class, ISynchronizableDataModel<T>, new()

Note that any other generic constraints that are placed on the
BaseSynchronizableDataModel class will also need to be added to the where T part of
this declaration. If, for example, we needed to implement another interface in the base class
and we did not add the same constraint for the T generic type parameter in the base
collection class, then we would get a compilation error when attempting to use instances of
our base class as the T parameter. Let's now look at this new base class:

using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using CompanyName.ApplicationName.DataModels.Interfaces;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.DataModels.Collections
{
 public class BaseSynchronizableCollection<T> : BaseCollection<T>
 where T : class, ISynchronizableDataModel<T>,
 INotifyPropertyChanged, new()
 {
 public BaseSynchronizableCollection(IEnumerable<T> collection) :
 base(collection) { }

 public BaseSynchronizableCollection(params T[] collection) :
 base(collection as IEnumerable<T>) { }

Writing Custom Application Frameworks Chapter 3

[93]

 public BaseSynchronizableCollection() : base() { }

 public virtual bool HasChanges
 {
 get { return this.Any(i => i.HasChanges); }
 }

 public virtual bool AreSynchronized
 {
 get { return this.All(i => i.IsSynchronized); }
 }

 public virtual IEnumerable<T> ChangedCollection
 {
 get { return this.Where(i => i.HasChanges); }
 }

 public virtual void Synchronize()
 {
 this.ForEach(i => i.Synchronize());
 }

 public virtual void RevertState()
 {
 this.ForEach(i => i.RevertState());
 }
 }
}

While remaining simple, this base collection class provides some powerful functionality.
We start off with the class declaration, with its generic type constraints that are inherited
from both our target T type classes and our BaseCollection<T> class. We've then
implemented the constructor overloads and passed initialization duties straight to the base
class.

Note that had we wanted to attach an additional level of event handlers to our collection
items, we would follow the pattern from the base class, rather than calling the base class
constructors in this way.

The HasChanges property can be used as a flag to detect whether any item in the collection
has any changes or not. This would typically be tied to the canExecute parameter of a save
command, so that the save button would become enabled when any item in the collection
had been edited and disabled if the changes were undone.

Writing Custom Application Frameworks Chapter 3

[94]

The AreSynchronized property simply specifies whether the items in the collection have
all been synchronized or not, but the real beauty of this class is in the ChangedCollection
property. Using a simple LINQ filter, we return only the items from the collection that have
changes. Imagine a scenario where we enable the user to edit multiple items at once. With
this property, our developers could extract just the items that they need to save from the
collection with zero effort.

Finally, this class provides one method to enable the synchronization of all of the items in
the collection at once and another to undo the changes of all of the edited items in the
collection likewise. Note the use of the custom ForEach Extension Method in these last two
methods; if you remember from the earlier With Extension Methods section, it enables us to
perform an action on each item in the collection.

Through the use of the properties and methods of our Data Model base classes by other
parts of our framework, we are able to extend their functionality further. While building
composite functionality from different components in this way is generally optional, it can
also be necessary, as we'll see later in the book.

The more common functionality that we can build into our application framework base
classes, the less work the developers that use our framework will have to do when
developing the application. However, we must plan carefully and not force the developers
to have unwanted properties and methods in order to extend a particular base class that
has some other functionality that they do want.

Typically, there will be different requirements for different components. The Data Model
classes will generally have more base classes than View Models because they play a bigger
role than View Models. The View Models simply provide the Views with the data and
functionality that they require. However, the Data Model classes contain the data, along
with validation, synchronization, and possibly animation methods and properties. With
this in mind, let's look again at the View Model base class.

We have already seen that we will need an implementation of the
INotifyPropertyChanged interface in our base class, but what else should we implement? If
every View will be providing some specific functionality, such as saving and deleting items
for example, then we can also add commands straight into our base class and abstract
methods that each derived View Model class will have to implement:

public virtual ICommand Refresh
{
 get
 {
 return new ActionCommand(action => RefreshData(),
 canExecute => CanRefreshData());
 }

Writing Custom Application Frameworks Chapter 3

[95]

}

protected abstract void RefreshData();

protected abstract bool CanRefreshData();

Again, it is important to declare this command as being virtual, in case the developers need
to provide their own, different implementation of it. An alternative to this arrangement
would be to just add abstract properties for each command, so that the individual
implementations would be completely up to the developers:

public abstract ICommand Save { get; }

While on the subject of commands, you may remember our basic implementation of
ActionCommand from Chapter 1, A Smarter Way of Working with WPF. At this point, it is
worth taking a short detour to investigate this further. Note that while the basic
implementation shown works well most of the time, it can catch us out occasionally and we
may notice that a button hasn't become enabled when it should have.

Let's look at an example of this. Imagine that we have a button in our UI that opens a folder
for the user to view files from and is enabled when a certain condition is met in the
ICommand.CanExecute method. Let's say that this condition is that the folder should have
some content. After all, there's no point in opening an empty folder for the user.

Now, let's imagine that this folder will be filled when the user performs some other
operation in the UI. The user clicks the button that starts this folder-filling function and the
application begins to fill it. At the point that the filling function is complete and the folder
now holds some content, the open folder button should become enabled, as its associated
command's CanExecute condition is now true.

Nevertheless, the CanExecute method won't be called at that point and why should it? The
button and, indeed, the CommandManager class has no idea that this background process
was occurring and that the condition of the CanExecute method has now been met.
Luckily, we have a couple of options to address this situation.

One option is to raise the CanExecuteChanged event manually to make the data bound
command sources recheck the output of the CanExecute method and update their enabled
state accordingly. To do this, we could add another method into our ActionCommand class,
but we would have to rearrange a few things first.

Writing Custom Application Frameworks Chapter 3

[96]

The current implementation doesn't store any references to the event handlers that get
attached to the CanExecuteChanged event. They're actually being stored in the
CommandManager class, as they're just passed straight through for the RequerySuggested
event to handle. In order to be able to raise the event manually, we'll need to store our own
references to the handlers and, to do that, we'll need an EventHandler object:

private EventHandler eventHandler;

Next, we'll need to add the references to the handlers that get attached and remove those
that get detached, while still passing references of them through to the RequerySuggested
event of the CommandManager:

public event EventHandler CanExecuteChanged
{
 add
 {
 eventHandler += value;
 CommandManager.RequerySuggested += value;
 }
 remove
 {
 eventHandler -= value;
 CommandManager.RequerySuggested -= value;
 }
}

The final change to our ActionCommand class is to add the method that we can call to raise
the CanExecuteChanged event when we want the command sources of the UI controls to
retrieve the new CanExecute value and update their enabled states:

public void RaiseCanExecuteChanged()
{
 eventHandler?.Invoke(this, new EventArgs());
}

Writing Custom Application Frameworks Chapter 3

[97]

We are now able to raise the CanExecuteChanged event whenever we need to, although
we'll also need to change our use of the ActionCommand class to do so. Whereas
previously, we were simply returning a new instance each time its getter was called, we'll
now need to keep a reference to each command that we want to have this ability:

private ActionCommand saveCommand = null;
...
public ICommand SaveCommand
{
 get { return saveCommand ?? (saveCommand =
 new ActionCommand(action => Save(), canExecute => CanSave())); }
}

If you are unfamiliar with the ?? operator shown in the preceding code, it is known as the
null-coalescing operator and simply returns the left-hand operand if it is not null, or the
right-hand operand if it is. In this case, the right-hand operand will initialize the command
and set it to the saveCommand variable. Then, to raise the event, we call the new
RaiseCanExecuteChanged method on our ActionCommand instance when we have
completed our operation:

private void ExecuteSomeCommand()
{
 // Perform some operation that fulfills the canExecute condition
 // then raise the CanExecuteChanged event of the ActionCommand
 saveCommand.RaiseCanExecuteChanged();
}

While our method is built into the ActionCommand class, at times we may not have access
to the particular instance that we need to raise the event on. It should therefore be noted at
this point that there is another, more direct way that we can get the CommandManager class
to raise its RequerySuggested event.

In these cases, we can simply call the CommandManager.InvalidateRequerySuggested
method. We should also be aware that these methods of raising the RequerySuggested
event will only work on the UI thread, so care should be taken when using them with
asynchronous code. Now that our short command-related detour is complete, let's return to
take a look at what other common functionality we might want to put into our View Model
base class.

If we have chosen to use generic base classes for our Data Models, then we can take
advantage of that in our BaseViewModel class. We can provide generic methods that
utilize members from these generic base classes. Let's take a look at some simple examples:

public T AddNewDataTypeToCollection<S, T>(S collection)
 where S : BaseSynchronizableCollection<T>

Writing Custom Application Frameworks Chapter 3

[98]

 where T : BaseSynchronizableDataModel<T>, new()
{
 T item = collection.GetNewItem();
 if (item is IAuditable)
 ((IAuditable)item).Auditable.CreatedOn = DateTime.Now;
 item.Synchronize();
 collection.Add(item);
 collection.CurrentItem = item;
 return item;
}

public T InsertNewDataTypeToCollection<S, T>(int index, S collection)
 where S : BaseSynchronizableCollection<T>
 where T : BaseSynchronizableDataModel<T>, new()
{
 T item = collection.GetNewItem();
 if (item is IAuditable)
 ((IAuditable)item).Auditable.CreatedOn = DateTime.Now;
 item.Synchronize();
 collection.Insert(index, item);
 collection.CurrentItem = item;
 return item;
}

public void RemoveDataTypeFromCollection<S, T>(S collection, T item)
 where S : BaseSynchronizableCollection<T>
 where T : BaseSynchronizableDataModel<T>, new()
{
 int index = collection.IndexOf(item);
 collection.RemoveAt(index);
 if (index > collection.Count) index = collection.Count;
 else if (index < 0) index++;
 if (index > 0 && index < collection.Count &&
 collection.CurrentItem != collection[index])
 collection.CurrentItem = collection[index];
}

Here, we see three simple methods that encapsulate more common functionality. Note that
we must specify the same generic type constraints that are declared on our bass classes.
Failure to do so would either result in compilation errors or us not being able to use our
Data Model classes with these methods.

The AddNewDataTypeToCollection and InsertNewDataTypeToCollection methods
are almost identical and start by creating a new item of the relevant type using the
GetNewItem method of our generic BaseSynchronizableCollection class. Next, we see
another use for our IAuditable interface. In this case, we set the CreatedOn date of the
new item if it implements this interface.

Writing Custom Application Frameworks Chapter 3

[99]

Because we declared the generic type constraint on the T-type parameter that specifies that
it must be, or extend, the BaseSynchronizableDataModel class, we are able to call the
Synchronize method to synchronize the new item. We then add the item to the collection
and set it as the value of the CurrentItem property. Finally, both methods return the new
item.

The last method performs the opposite action; it removes an item from the collection.
Before doing so, it checks the item's position in the collection and sets the CurrentItem
property to the next item if possible, or the next nearest item if the removed item was the
last item in the collection.

Once again, we see how we can encapsulate commonly used functionality into our base
class and save the users of our framework both time and effort in reimplementing this
functionality in each View Model class. We can package up any common functionality that
we require in this manner. Having now seen several examples of providing functionality in
our base classes, let's now turn our attention to providing separation between the
components of our framework.

Separating the Data Access Layer
Now that we've had a look at providing a variety of functionality through our base classes
and interfaces, let's investigate how we can provide the Separation of Concerns that is
crucial when using the MVVM pattern. Once again, we turn to the humble interface to help
us achieve this. Let's view a simplified example:

using System;
using CompanyName.ApplicationName.DataModels;

namespace CompanyName.ApplicationName.Models.Interfaces
{
 public interface IDataProvider
 {
 User GetUser(Guid id);

 bool SaveUser(User user);
 }
}

Writing Custom Application Frameworks Chapter 3

[100]

We start off with a very simple interface. Of course, real applications will have a great
many more methods than this, but the principle is the same, regardless of the complexity of
the interface. So here, we just have a GetUser and a SaveUser method that our
DataProvider classes need to implement. Now, let's look at the
ApplicationDataProvider class:

using System;
using System.Data.Linq;
using System.Linq;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.Models.Interfaces;

namespace CompanyName.ApplicationName.Models.DataProviders
{
 public class ApplicationDataProvider : IDataProvider
 {
 public ApplicationDataContext DataContext
 {
 get { return new ApplicationDataContext(); }
 }

 public User GetUser(Guid id)
 {
 DbUser dbUser = DataContext.DbUsers.SingleOrDefault(u => u.Id == id);
 if (dbUser == null) return null;
 return new User(dbUser.Id, dbUser.Name, dbUser.Age);
 }

 public bool SaveUser(User user)
 {
 using (ApplicationDataContext dataContext = DataContext)
 {
 DbUser dbUser =
 dataContext.DbUsers.SingleOrDefault(u => u.Id == user.Id);
 if (dbUser == null) return false;
 dbUser.Name = user.Name;
 dbUser.Age = user.Age;
 dataContext.SubmitChanges(ConflictMode.FailOnFirstConflict);
 return true;
 }
 }
 }
}

Writing Custom Application Frameworks Chapter 3

[101]

This ApplicationDataProvider class uses some simple LINQ to SQL to query and
update a database for the User specified by the id value provided. That means that this
particular implementation of the interface requires a connection to a database. We want to
avoid having this dependency when testing our application, so we'll need another
implementation of the interface to use for testing purposes. Let's take a look at our mock
implementation now:

using System;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.Models.Interfaces;

namespace Test.CompanyName.ApplicationName.Models.DataProviders
{
 public class MockDataProvider : IDataProvider
 {
 public User GetUser(Guid id)
 {
 return new User(id, "James Smith", 25);
 }

 public bool SaveUser(User user)
 {
 return true;
 }
 }
}

In this MockDataProvider implementation of the IDataProvider interface, we can see
that the data is just manually mocked. In fact, it just returns the one single User from the
GetUser method and always returns true from the SaveUser method, so it's fairly
useless.

In a real-world application, we would either utilize a mocking framework, or manually
mock up some more substantial testing data. Still, this will suffice for the point that we are
focusing on here. Now that we've seen the classes involved, let's look at how they might be
used.

The idea is that we have some sort of DataController class or classes that sit between the
IDataProvider interface and the View Model classes. The View Model classes request
data from the DataController class and, in turn, it requests data through the interface.

Writing Custom Application Frameworks Chapter 3

[102]

It therefore mirrors the methods of the interface and typically introduces some extra
functionality, such as feedback handling for example. Let's see what our simplified
DataController class looks like:

using System;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.Models.Interfaces;

namespace CompanyName.ApplicationName.Models.DataControllers
{
 public class DataController
 {
 private IDataProvider dataProvider;

 public DataController(IDataProvider dataProvider)
 {
 DataProvider = dataProvider;
 }

 protected IDataProvider DataProvider
 {
 get { return dataProvider; }
 private set { dataProvider = value; }
 }

 public User GetUser(Guid id)
 {
 return DataProvider.GetUser(id);
 }

 public bool SaveUser(User user)
 {
 return DataProvider.SaveUser(user);
 }
 }
}

As we can see, the DataController class has a private member variable of
type IDataProvider, which is populated in its constructor. It is this variable that is used to
access the application data source. When the application is running, an instance of our
ApplicationDataProvider class is used to instantiate the DataController class, and so
our actual data source is used:

DataController dataController =
 new DataController(new ApplicationDataProvider());

Writing Custom Application Frameworks Chapter 3

[103]

However, when we are testing our application, we can use an instance of our
MockDataProvider class to instantiate the DataController class instead, thereby
eliminating our dependency on the actual data source:

DataController dataController = new DataController(new MockDataProvider());

In this way, we can swap out the code that provides the data for the View Models, while
keeping the rest of the code unchanged. This enables us to test the code in the View Models
without having to be connected to our actual data storage device. In the next section, we'll
see better ways to initialize these classes, but for now, let's see what else our
DataController class could do for us.

Interfaces become more useful when they are used by parts of the application framework,
other than the implementing classes. Apart from than defining some auditing properties
and having the possibility of outputting their values, our earlier IAuditable interface
example is not overly useful. We could however, extend its functionality further in our
DataController class by automatically updating its values. We'll need to add some more
members to achieve this:

using CompanyName.ApplicationName.DataModels.Interfaces;
...
public User CurrentUser { get; set; }
...
private void SetAuditUpdateFields<T>(T dataModel) where T : IAuditable
{
 dataModel.Auditable.UpdatedOn = DateTime.Now;
 dataModel.Auditable.UpdatedBy = CurrentUser;
 return dataModel;
}

We first need to add a property of type User that we will use to set the value of the current
user of the application. This can be set as new users login to the application. Next, we need
a method to update the "updated" values of our IAuditable interface. Again, we add a
generic type constraint to ensure that only objects that implement our interface can be
passed into this method. The result of this is that the developers that use our application
framework can easily update these values:

public bool SaveUser(User user)
{
 return DataProvider.SaveUser(SetAuditUpdateFields(user));
}

Writing Custom Application Frameworks Chapter 3

[104]

We could add a similar method to set the "created" audit properties when adding new
objects:

public bool AddUser(User user)
{
 return DataProvider.AddUser(SetAuditCreateFields(user));
}
...
private void SetAuditCreateFields<T>(T dataModel) where T : IAuditable
{
 dataModel.Auditable.CreatedOn = DateTime.Now;
 dataModel.Auditable.CreatedBy = CurrentUser;
 return dataModel;
}

Continuing this example, we could extend the constructor of our DataController class to
accept a User input parameter that we can use to set our CurrentUser property with:

public DataController(IDataProvider dataProvider, User currentUser)
{
 DataProvider = dataProvider;
 CurrentUser = currentUser;
}

We could then expose our data source to our View Models through their base class using a
CurrentUser property in the StateManager class and the DependencyManager class that
we'll see in the following sections:

protected DataController Model
{
 get { return new DataController(
 DependencyManager.Instance.Resolve<IDataProvider>(),
 StateManager.CurrentUser); }
}

Essentially, anything, that we need to do to the data coming from our application data
source can be achieved in a single DataController class. However, if we require several
different modifications, then we could alternatively create several controller classes and
chain them together, with each performing their separate tasks in turn.

Writing Custom Application Frameworks Chapter 3

[105]

As they could all implement the same methods, they could all potentially implement the
same interface:

We'll see an example of this in Chapter 10, Completing That Great User Experience, but now
that we have a good idea on how best to setup our application data source connections to
provide the separation required by the MVVM pattern, we can focus on the next way of
building functionality into our framework. Let's move on to discover how we can plug
more complex and/or specialized functionality into our framework.

Providing services
The job of the base classes and interfaces in our application framework are to encapsulate
functionality that is commonly used by our View Models and Data Models. When the
required functionality is more complex, or when it involves particular resources, or external
connections, we implement it in separate service, or manager classes. For the remainder of
this book, we will refer to these as manager classes. In larger applications, these are
typically provided in a separate project.

Encapsulating them in a separate project enables us to reuse the functionality from these
classes in our other applications. Which classes we use in this project will depend on the
requirements of the application that we're building, but it will often include classes that
provide the ability to send emails, to access the end user's hard drive, to export data in
various formats, or to manage global application state for example.

Writing Custom Application Frameworks Chapter 3

[106]

We will investigate a number of these classes in this book, so that we have a good idea of
how to implement our own custom manager classes. The most commonly used of these
classes can normally be accessed directly from the base View Model class via properties.
There are a few different ways that we can expose these classes to the View Models, so let's
examine them.

When a manager class is used often, and for short durations each time, we can expose a
new instance of them each time, as follows:

public FeedbackManager FeedbackManager
{
 get { return new FeedbackManager(); }
}

However, if a manager class is required for the life of the application because it must
remember a particular state or configuration, for example, then we typically use the static
keyword in one way or another. The simplest option would be to declare a normal class,
but expose it via a static property:

private static StateManager stateManager = new StateManager();
...
public static StateManager StateManager
{
 get { return stateManager; }
}

An alternative method of having one and only one instance of a class being instantiated and
having it stay alive for as long as the application is running is for us to use the Singleton
pattern. While it was all the rage twenty or so years ago, it has unfortunately recently fallen
foul of more modern programming principles, such as the likes of SOLID, which states that
each class should have a single responsibility.

The Singleton pattern breaks this principle as it serves whatever purpose we design it for,
but it is also responsible for instantiating itself and maintaining a single access point. Before
discussing the merits and pitfalls of this pattern further, let's take a look at how we might
implement it in our manager class:

namespace CompanyName.ApplicationName.Managers
{
 public class StateManager
 {
 private static StateManager instance;

 private StateManager() { }

 public static StateManager Instance

Writing Custom Application Frameworks Chapter 3

[107]

 {
 get { return instance ?? (instance = new StateManager()); }
 }
 ...
 }
}

Note that it can be implemented in a variety of ways, but this particular way uses lazy
initialization, where the instance is not instantiated until it is first referenced via the
Instance property. Using the ?? operator again, the Instance property getter can be read
as "return the one and only instantiated instance if it is not null, or, if it is, instantiate the
one and only instance and then return it." The significant part of this pattern is that as there
is no public constructor and, therefore, the class cannot be externally instantiated, this
property is the sinlgle way to access the internal object.

However, this is the very part that causes trouble for some developers, as this makes
inheritance impossible with these classes. In our case though, we won't need to extend our
StateManager class, so that is not a concern for us. Others may point to the problem that
exposing this Singleton class, as shown in the following code, will tightly couple it to the
base View Model class that it is declared in:

public StateManager StateManager
{
 get { return StateManager.Instance; }
}

While this is true, what harm is that with this class? Its purpose is to maintain the state of
user settings, common or default values, and values for UI display and operation statuses.
It contains no resources and no real reason to avoid using it when running unit tests, so in
this case, the tight coupling is inconsequential. In this regard, the Singleton pattern
continues to be a useful tool in the right situations, but we should certainly be aware of its
pitfalls all the same.

However, if a particular manger class does utilize resources or creates some form of
connection with the outside world, for example, like an EmailManager would, then we
will need to create an interface for it to maintain our Separation of Concerns. Remember
that interfaces enable us to disconnect the actual application components and replace them
with mock components while testing. In these cases, we have to expose the functionality in
the base classes slightly differently:

private IEmailManager emailManager;

...
public BaseViewModel(IEmailManager emailManager)
{

Writing Custom Application Frameworks Chapter 3

[108]

 this.emailManager = emailManager; }
}
...
public IEmailManager EmailManager
{
 get { return emailManager; }
}

The general idea here is for us to have no direct contact with the manager class in hand,
instead accessing its functionality through the interface methods and properties. By doing
this, we are able to decouple the manager class from the View Models that use it and
therefore enable them to be used independently of each other. Note that this is a very
simple example of Dependency Injection.

Implementing Dependency Injection
Dependency injection is a well-known design pattern that aids in decoupling various
components of an application. If one class uses another class to perform some functionality
internally, then the class that is internally used becomes a dependency of the class that uses
it. It cannot achieve its objectives without it. In some cases, this is not a problem, but in
others, it can represent a huge problem.

For example, let's imagine that we have a FeedbackManager class that is responsible for
providing operational feedback to the end users. In that class, we have a
FeedbackCollection instance that holds the Feedback objects that are currently being
displayed to the current user. Here, the Feedback objects are a dependency of the
FeedbackCollection instance and that, in turn, is a dependency of the
FeedbackManager class.

These objects are all tightly coupled, which is usually a bad thing in software development.
However, they are also tightly related by necessity. A FeedbackCollection object would
be useless without the Feedback objects, as would the FeedbackManager object.

In this particular case, these objects require this coupling to make them useful together.
This is called composition, where the individual parts form a whole, but do little on their
own, so it really is no problem for them to be connected in this way.

On the other hand, let's now contemplate the connection between our View Models and our
DAL. Our View Models will definitely need access to some data, so it would at first seem to
make sense to encapsulate a class in our View Models that provides the data that it
requires.

Writing Custom Application Frameworks Chapter 3

[109]

While that would certainly work, it would unfortunately result in the DAL class becoming
a dependent of the View Model class. Moreover, it would permanently couple our View
Model component to the DAL and break the Separation of Concerns that MVVM provides.
The kind of connection that we require in this situation is more like aggregation, where the
individual parts are useful on their own.

In these cases, we want to be able to use the individual components separately and to avoid
any tight coupling between them. Dependency Injection is a tool that we can use to provide
this separation for us. In the absolute simplest terms, Dependency Injection is implemented
through the use of interfaces. We've already seen some basic examples of this in the
DataController class from the Separating the Data Access Layer section, and the
EmailManager example from the previous section.

However, they were very basic examples and there are a variety of ways of improving
them. Many application frameworks will provide the ability for developers to use
Dependency Injection to inject the dependencies into their classes and we can do the same
with ours. In its simplest form, our DependencyManager class will simply need to register
the dependencies and provide a way to resolve them when required. Let's take a look:

using System;
using System.Collections.Generic;

namespace CompanyName.ApplicationName.Managers
{
 public class DependencyManager
 {
 private static DependencyManager instance;
 private static Dictionary<Type, Type> registeredDependencies =
 new Dictionary<Type, Type>();

 private DependencyManager() { }

 public static DependencyManager Instance
 {
 get { return instance ?? (instance = new DependencyManager()); }
 }

 public int Count
 {
 get { return registeredDependencies.Count; }
 }

 public void ClearRegistrations()
 {
 registeredDependencies.Clear();
 }

Writing Custom Application Frameworks Chapter 3

[110]

 public void Register<S, T>() where S : class where T : class
 {
 if (!typeof(S).IsInterface) throw new ArgumentException("The S
 generic type parameter of the Register method must be an
 interface.", "S");
 if (!typeof(S).IsAssignableFrom(typeof(T))) throw
 new ArgumentException("The T generic type parameter must be a
 class that implements the interface specified by the S generic
 type parameter.", "T");
 if (!registeredDependencies.ContainsKey(typeof(S)))
 registeredDependencies.Add(typeof(S), typeof(T));
 }

 public T Resolve<T>() where T : class
 {
 Type type = registeredDependencies[typeof(T)];
 return Activator.CreateInstance(type) as T;
 }

 public T Resolve<T>(params object[] args) where T : class
 {
 Type type = registeredDependencies[typeof(T)];
 if (args == null || args.Length == 0)
 return Activator.CreateInstance(type) as T;
 else return Activator.CreateInstance(type, args) as T;
 }
 }
}

You may have noticed that we are using the Singleton pattern again for this class. In this
case, it again fits our requirements exactly. We want one, and only one, instance of this
class to be instantiated and we want it to stay alive for as long as the application is running.
When testing, it is used to inject our mock dependencies into the View Models, so it is part
of the framework that enables our Separation of Concerns.

The Count property and the ClearRegistrations method are more useful for testing
than when running the application and the real action goes on in the Register and
Resolve methods. The Register method registers the interface type represented by the S
generic type parameter, with the concrete implementation of that interface represented by
the T generic type parameter.

As the S generic type parameter must be an interface, an ArgumentException is thrown at
runtime if the type parameter class supplied is not one. A further check is performed to
ensure that the type specified by the T generic type parameter actually implements the
interface specified by the S generic type parameter, and a further ArgumentException is
thrown if the check fails.

Writing Custom Application Frameworks Chapter 3

[111]

The method then verifies the fact that the type parameter provided is not already in the
Dictionary and adds it if it is unique in the collection. Therefore, in this particular
implementation, we can only specify a single concrete implementation for each supplied
interface. We could change this to either update the stored reference if an existing type was
passed again, or even to store multiple concrete types for each interface. It all depends on
the application requirements.

Note the generic type constraint declared on this method that ensures that the type
parameters will at least be classes. Unfortunately, there is no such constraint that would
allow us to specify that a particular generic type parameter should be an interface.
However, this type of parameter validation should be used where possible, as it helps the
users of our framework to avoid using these methods with inappropriate values.

The Resolve methods use some simple reflection to return the concrete implementations of
the interface types represented by the generic type parameters used. Again, note the
generic type constraints declared by these two methods, that specify that the type used for
type T parameter must be a class. This is to prevent the Activator.CreateInstance
methods from throwing an Exception at runtime, if a type that could not be instantiated
were used.

The first overload can be used for classes without any constructor parameters, and the
second has an additional params input parameter to pass the parameters to use when
instantiating classes that require constructor parameters.

The DependencyManager class can be set up during application startup, using the
App.xaml.cs file. To do this, we first need to find the following StartupUri property
setting in the Application declaration at the top of the App.xaml file:

StartupUri="MainWindow.xaml"

We then need to replace this StartupUri property setting with the following Startup
property setting:

Startup="App_Startup"

In this example, App_Startup is the name of the initialization method that we want to be
called at startup. Note that as the WPF Framework is no longer starting the MainWindow
class, it is now our responsibility to do so:

using System.Windows;
using CompanyName.ApplicationName.Managers;
using CompanyName.ApplicationName.ViewModels;
using CompanyName.ApplicationName.ViewModels.Interfaces;

Writing Custom Application Frameworks Chapter 3

[112]

namespace CompanyName.ApplicationName
{
 public partial class App : Application
 {
 public void App_Startup(object sender, StartupEventArgs e)
 {
 RegisterDependencies();
 new MainWindow().Show();
 }

 private void RegisterDependencies()
 {
 DependencyManager.Instance.ClearRegistrations();
 DependencyManager.Instance.Register<IDataProvider,
 ApplicationDataProvider>();
 DependencyManager.Instance.Register<IEmailManager, EmailManager>();
 DependencyManager.Instance.Register<IExcelManager, ExcelManager>();
 DependencyManager.Instance.Register<IWindowManager, WindowManager>();
 }
 }
}

When we want to inject these dependencies into a View Model in the application at
runtime, we could use the DependencyManager class like this:

UsersViewModel viewModel =
 new UsersViewModel(DependencyManager.Instance.Resolve<IEmailManager>(),
 DependencyManager.Instance.Resolve<IExcelManager>(),
 DependencyManager.Instance.Resolve<IWindowManager>());

The real beauty of this system is that when testing our View Models, we can register our
mock manager classes instead. The same preceding code will then resolve the interfaces to
their mock concrete implementations, thereby freeing our View Models from their actual
dependencies:

private void RegisterMockDependencies()
{
 DependencyManager.Instance.ClearRegistrations();
 DependencyManager.Instance.Register<IDataProvider, MockDataProvider>();
 DependencyManager.Instance.Register<IEmailManager, MockEmailManager>();
 DependencyManager.Instance.Register<IExcelManager, MockExcelManager>();
 DependencyManager.Instance.Register<IWindowManager, MockWindowManager>();
}

Writing Custom Application Frameworks Chapter 3

[113]

We've now seen the code that enables us to swap out our dependent classes with mock
implementations when we are testing our application. However, we've also seen that not all
of our manager classes will require this. So, what exactly represents a dependency? Let's
take a look at a simple example involving a UI popup message box:

using CompanyName.ApplicationName.DataModels.Enums;

namespace CompanyName.ApplicationName.Managers.Interfaces
{
 public interface IWindowManager
 {
 MessageBoxButtonSelection ShowMessageBox(string message,
 string title, MessageBoxButton buttons, MessageBoxIcon icon);
 }
}

Here, we have an interface that declares a single method. This is the method that the
developers will call from the View Model classes when they need to display a message box
in the UI. It will use a real MessageBox object during runtime, but that uses a number of
enumerations from the System.Windows namespace.

We want to avoid interacting with these enumeration instances in our View Models, as that
will require adding a reference to the PresentationFramework assembly and tie our
View Models to part of our Views component.

We therefore need to abstract them from our interface method definition. In this case, we
have simply replaced the enumerations from the PresentationFramework assembly with
custom enumerations from our domain that merely replicate the original values. As such,
there is little point in showing the code for these custom enumerations here.

While it's never a good idea to duplicate code, it's an even worse idea to add a UI assembly
like the PresentationFramework assembly to our ViewModels project. By encapsulating
this assembly within the Managers project and converting its enumerations, we can expose
the functionality that we need from it without tying it to our View Models:

using System.Windows;
using CompanyName.ApplicationName.Managers.Interfaces;
using MessageBoxButton =
 CompanyName.ApplicationName.DataModels.Enums.MessageBoxButton;
using MessageBoxButtonSelection =
 CompanyName.ApplicationName.DataModels.Enums.MessageBoxButtonSelection;
using MessageBoxIcon =
 CompanyName.ApplicationName.DataModels.Enums.MessageBoxIcon;

namespace CompanyName.ApplicationName.Managers

Writing Custom Application Frameworks Chapter 3

[114]

{
 public class WindowManager : IWindowManager
 {
 public MessageBoxButtonSelection ShowMessageBox(string message,
 string title, MessageBoxButton buttons, MessageBoxIcon icon)
 {
 System.Windows.MessageBoxButton messageBoxButtons;
 switch (buttons)
 {
 case MessageBoxButton.Ok: messageBoxButtons =
 System.Windows.MessageBoxButton.OK; break;
 case MessageBoxButton.OkCancel: messageBoxButtons =
 System.Windows. MessageBoxButton.OkCancel; break;
 case MessageBoxButton.YesNo: messageBoxButtons =
 System.Windows.MessageBoxButton.YesNo; break;
 case MessageBoxButton.YesNoCancel: messageBoxButtons =
 System.Windows.MessageBoxButton.YesNoCancel; break;
 default: messageBoxButtons =
 System.Windows.MessageBoxButton.OKCancel; break;
 }
 MessageBoxImage messageBoxImage;
 switch (icon)
 {
 case MessageBoxIcon.Asterisk:
 messageBoxImage = MessageBoxImage.Asterisk; break;
 case MessageBoxIcon.Error:
 messageBoxImage = MessageBoxImage.Error; break;
 case MessageBoxIcon.Exclamation:
 messageBoxImage = MessageBoxImage.Exclamation; break;
 case MessageBoxIcon.Hand:
 messageBoxImage = MessageBoxImage.Hand; break;
 case MessageBoxIcon.Information:
 messageBoxImage = MessageBoxImage.Information; break;
 case MessageBoxIcon.None:
 messageBoxImage = MessageBoxImage.None; break;
 case MessageBoxIcon.Question:
 messageBoxImage = MessageBoxImage.Question; break;
 case MessageBoxIcon.Stop:
 messageBoxImage = MessageBoxImage.Stop; break;
 case MessageBoxIcon.Warning:
 messageBoxImage = MessageBoxImage.Warning; break;
 default: messageBoxImage = MessageBoxImage.Stop; break;
 }
 MessageBoxButtonSelection messageBoxButtonSelection =
 MessageBoxButtonSelection.None;
 switch (MessageBox.Show(message, title, messageBoxButtons,
 messageBoxImage))
 {

Writing Custom Application Frameworks Chapter 3

[115]

 case MessageBoxResult.Cancel: messageBoxButtonSelection =
 MessageBoxButtonSelection.Cancel; break;
 case MessageBoxResult.No: messageBoxButtonSelection =
 MessageBoxButtonSelection.No; break;
 case MessageBoxResult.OK: messageBoxButtonSelection =
 MessageBoxButtonSelection.Ok; break;
 case MessageBoxResult.Yes: messageBoxButtonSelection =
 MessageBoxButtonSelection.Yes; break;
 }
 return messageBoxButtonSelection;
 }
 }
}

We start with our using directives and see further examples of using alias directives. In
this case, we created some enumeration classes with the same names as those from the
System.Windows namespace. To avoid the conflicts that we would have caused by adding
a standard using directive for our
CompanyName.ApplicationName.DataModels.Enums namespace, we add aliases to
enable us to work with just the types from our namespace that we require.

After this, our WindowManager class simply converts the UI-related enumeration values to
and from our custom enumerations, so that we can use the functionality of the message
box, but not be tied to its implementation. Imagine a situation where we need to use this to
output an error message:

WindowManager.ShowMessageBox(errorMessage, "Error", MessageBoxButton.Ok,
 MessageBoxIcon.Error);

When execution reaches this point, a message box will pop up, displaying an error message
with an error icon and heading. The application will freeze at this point while waiting for
user feedback and, if the user does not click a button on the popup, it will remain frozen
indefinitely. If execution reaches this point during a unit test and there is no user to click
the button, then our test will freeze indefinitely and never complete.

In this example, the WindowManager class is dependent upon having a user present to
interact with it. Therefore, if the View Models used this class directly, they would also have
the same dependency. Other classes might have a dependency on an email server, database,
or other type of resource, for example. These are the types of classes that View Models
should only interact with via interfaces.

Writing Custom Application Frameworks Chapter 3

[116]

In doing so, we provide the ability to use our components independently from each other.
Using our IWindowManager interface, we are able to use our ShowMessageBox method
independently of the end users. In this way, we are able to break the user dependency and
run our unit tests without them. Our mock implementation of the interface can simply
return a positive response each time and the program execution can continue unheeded:

using CompanyName.ApplicationName.DataModels.Enums;
using CompanyName.ApplicationName.Managers.Interfaces;

namespace Test.CompanyName.ApplicationName.Mocks.Managers
{
 public class MockWindowManager : IWindowManager
 {
 public MessageBoxButtonSelection ShowMessageBox(string message,
 string title, MessageBoxButton buttons, MessageBoxIcon icon)
 {
 switch (buttons)
 {
 case MessageBoxButton.Ok:
 case MessageBoxButton.OkCancel:
 return MessageBoxButtonSelection.Ok;
 case MessageBoxButton.YesNo:
 case MessageBoxButton.YesNoCancel:
 return MessageBoxButtonSelection.Yes;
 default: return MessageBoxButtonSelection.Ok;
 }
 }
 }
}

This simple example shows another method of exposing functionality from a source to our
View Models, but without it becoming a dependency. In this way, we can provide a whole
host and variety of capabilities to our View Models, while still enabling them to function
independently.

We now have the knowledge and tools to build functionality into our application
framework in many different ways, yet our probe into application frameworks is still not
quite complete. One other essential matter is that of connecting our Views with our View
Models. We'll need to decide how the users of our framework should do this, so let's look at
some choices.

Writing Custom Application Frameworks Chapter 3

[117]

Connecting Views with View Models
In WPF, there are several ways to connect our Views to their data sources. We've all seen
examples of the simplest method of a View setting its DataContext property to itself in its
code behind:

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 DataContext = this;
 }
}

However, this should only ever be used for quick demonstrations and never in our real-
world applications. If we need to data-bind to properties declared in a View's code behind,
let's say for a particular custom UserControl, then we should use RelativeSource
bindings instead. We'll find out more about this in Chapter 4, Becoming Proficient with Data
Binding, but for now, let's continue looking at the alternative ways to connect the Views
with their data sources.

The next simplest method utilizes the data templating Model that is built into the WPF
Framework. This topic will also be covered in much more detail in Chapter 4, Becoming
Proficient with Data Binding, but, in short, a DataTemplate is used to inform the WPF
Framework how we want it to render data objects of a particular type. The simple example
shows how we could define the visual output of our User objects:

<DataTemplate DataType="{x:Type DataModels:User}">
 <TextBlock Text="{Binding Name}" />
</DataTemplate>

In this example, the DataType property specifies which type of object this relates to and
therefore, which properties the containing XAML bindings have access to. Keeping it
simple for now, we just output the name of each User in this DataTemplate. When we
data-bind one or more User objects to a UI control that is within the scope of this
DataTemplate, they will each be rendered by the WPF Framework as a TextBlock that
specifies their name.

Writing Custom Application Frameworks Chapter 3

[118]

When the rendering engine of the WPF Framework comes across a custom data object, it
looks for a DataTemplate that has been declared for its type and, if it finds one, it renders
the object according to the XAML contained within the relevant template. This means that
we can create a DataTemplate for our View Model classes that simply specifies their
related View classes as the rendering output:

<DataTemplate DataType="{x:Type ViewModels:UsersViewModel}">
 <Views:UsersView />
</DataTemplate>

In this example, we have specified that when the WPF Framework sees an instance of our
UserViewModel class, it should render it as one of our UserView classes. At this point, it
will set our View Model instance to the DataContext property of the related View
implicitly. The only downside to this method is minimal, and is that we have to add a new
DataTemplate to our App.xaml file for each of our View-View Model pairs.

This method of connection works View Model first, where we supply the View Model
instance and the WPF Framework takes care of the rest. In these cases, we typically use a
ContentControl that has its Content property data bound to a ViewModel property,
which the application View Models are set to. The WPF Framework notes the type of the
View Model that is set and renders it according to its specified DataTemplate:

private BaseViewModel viewModel;

public BaseViewModel ViewModel
{
 get { return viewModel; }
 set { viewModel = value; NotifyPropertyChanged(); }
}
...
ViewModel = new UserViewModel();
...
<ContentControl Content="{Binding ViewModel}" />

This is the preferred version of View to View Model connections for many, as the WPF
Framework is left to take care of most of the details. However, there is another way to
construct these connections that adds a layer of abstraction to the process.

Writing Custom Application Frameworks Chapter 3

[119]

Locating View Models
For this method, we need to create interfaces for each of our View Models. It's called View
Model Location and it's fairly similar to the Dependency Injection example that we have
already seen. In fact, we could even use our existing DependencyManager to achieve a
similar result. Let's take a quick look at that first:

DependencyManager.Instance.Register<IUserViewModel, UserViewModel>();
...
public partial class UserView : UserControl
{
 public UserView()
 {
 InitializeComponent();
 DataContext = DependencyManager.Instance.Resolve<IUserViewModel>();
 }
}
...
<Views:UsersView />

In this example, we associate the IUserViewModel interface with the UserViewModel
concrete implementation of that interface in some initialization code and later, resolve the
dependency, before setting it as the View's DataContext value. After declaring our Views
in the XAML, they automatically hook themselves up to their related View Models at
runtime.

This method of connecting Views to View Models works View first, where we declare the
View and it instantiates its own View Model and sets its own DataContext. The downside
with this method is that we have to create an interface for all of our View Models and
register and resolve each of them using the DependencyManager.

The main difference between this implementation and that of a View Model Locator is that
a locator provides a level of abstraction from our Singleton class, which enables us to
indirectly instantiate our View Models from the XAML, without using the code behind.
They also have a little extra specific functionality that enables dummy data to be used at
design time. Let's take a look at the simplest possible example:

using CompanyName.ApplicationName.Managers;
using CompanyName.ApplicationName.ViewModels;
using CompanyName.ApplicationName.ViewModels.Interfaces;

namespace CompanyName.ApplicationName.Views.ViewModelLocators
{
 public class ViewModelLocator
 {
 public IUserViewModel UserViewModel

Writing Custom Application Frameworks Chapter 3

[120]

 {
 get { return DependencyManager.Instance.Resolve<IUserViewModel>(); }
 }
 }
}

Here, we have a very basic View Model Locator that simply locates a single View Model. It
is important that this View Model class has an empty constructor so that it can be
instantiated from the XAML. Let's see how we can do this:

<UserControl x:Class="CompanyName.ApplicationName.Views.UserView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ViewModelLocators="clr-namespace:
 CompanyName.ApplicationName.Views.ViewModelLocators"
 Height="30" Width="300">
 <UserControl.Resources>
 <ViewModelLocators:ViewModelLocator x:Key="ViewModelLocator" />
 </UserControl.Resources>
 <UserControl.DataContext>
 <Binding Path="UserViewModel"
 Source="{StaticResource ViewModelLocator}" />
 </UserControl.DataContext>
 <TextBlock Text="{Binding User.Name}" />
</UserControl>

As a side note, you may have noticed that our ViewModelLocator class has been declared
in the Views project. The location of this class is not very important, but it must have
references to both the ViewModels and the Views projects, and this severely limits the
number of projects in which it can reside. Typically, the only projects that will have access
to the classes from both of these projects will be the Views project and the startup project.

Getting back to our example, an instance of the ViewModelLocator class is declared in the
View's Resources section and this will only work if we have a parameterless constructor
(including the default parameterless constructor that is declared for us if we do not
explicitly declare a constructor). Without a parameterless constructor, we will receive an
error in the Visual Studio designer.

Our View sets its own DataContext property in XAML this time, using a binding path to
the UserViewModel property from our ViewModelLocator resource. The property then
utilizes our DependencyManager to resolve the concrete implementation of the
IUserViewModel interface and return it for us.

Writing Custom Application Frameworks Chapter 3

[121]

There are other benefits to using this pattern as well though. One problem often faced by
WPF developers is that the Visual Studio WPF Designer cannot resolve the interfaces that
are used to back their concrete implementations, nor can it access the application data
sources during design time. The result of this is that the designer does not typically display
data items that cannot be resolved.

One thing that we can do with our ViewModelLocator resource is to provide mock View
Models that have dummy data returned from their properties that we can use to help
visualize our Views as we construct them. To achieve this, we can make use of the
IsInDesignMode Attached Property from the DesignerProperties .NET class:

public bool IsDesignTime
{
 get { return
 DesignerProperties.GetIsInDesignMode(new DependencyObject()); }
}

The DependencyObject object here is required by the Attached Property and, in fact, is the
object that is being checked. As all objects supplied here would return the same value, we
are free to use a new one each time. If we are concerned that this property will be called
more frequently than the garbage collector, we could opt to use a single member instead,
just for this purpose:

private DependencyObject dependencyObject = new DependencyObject();

public bool IsDesignTime
{
 get { return DesignerProperties.GetIsInDesignMode(dependencyObject); }
}

However, if we need a DependencyObject object just for this purpose, then we could
simplify things further by extending our ViewModelLocator class from the
DependencyObject class and use itself as the required parameter. Of course, this would
mean that our class would inherit unwanted properties, so some might prefer to avoid
doing this. Let's see how we could use this property to provide the WPF Designer with
mock data at design time:

using System.ComponentModel;
using System.Windows;
using CompanyName.ApplicationName.Managers;
using CompanyName.ApplicationName.ViewModels;
using CompanyName.ApplicationName.ViewModels.Interfaces;

namespace CompanyName.ApplicationName.Views.ViewModelLocators
{

Writing Custom Application Frameworks Chapter 3

[122]

 public class ViewModelLocator : DependencyObject
 {
 public bool IsDesignTime
 {
 get { return DesignerProperties.GetIsInDesignMode(this); }
 }

 public IUserViewModel UserViewModel
 {
 get
 {
 return IsDesignTime ? new MockUserViewModel() :
 DependencyManager.Instance.Resolve<IUserViewModel>();
 }
 }
 }
}

If you look at our UserViewModel property, you'll see the value that we return is now
dependent upon the value of the IsDesignTime property. If we are in design time, for
example, when the View file is open in the WPF Designer, then the MockUserViewModel
class will be returned. At runtime, however, the concrete implementation of our
IUserViewModel interface that we registered with the DependencyManager will be
returned instead.

The MockUserViewModel class will typically hardcode some mock data and return it from
its properties when requested. In this manner, the WPF Designer will be able to visualize
the data for the developers or designers while they build the Views.

However, each View will require a new property in our locator class and we'll need to copy
this conditional operator statement from the preceding code for each. As always in OOP,
there is a further abstraction that we could make to hide that implementation away from
the developers that will use our framework. We could create a generic base class for our
View Model Locator:

using System.ComponentModel;
using System.Windows;
using CompanyName.ApplicationName.Managers;

namespace CompanyName.ApplicationName.Views.ViewModelLocators
{
 public abstract class BaseViewModelLocator<T> : DependencyObject
 where T : class
 {
 private T runtimeViewModel, designTimeViewModel;

Writing Custom Application Frameworks Chapter 3

[123]

 protected bool IsDesignTime
 {
 get { return DesignerProperties.GetIsInDesignMode(this); }
 }

 public T ViewModel
 {
 get { return IsDesignTime ?
 DesignTimeViewModel : RuntimeViewModel; }
 }

 protected T RuntimeViewModel
 {
 get { return runtimeViewModel ??
 (runtimeViewModel = DependencyManager.Instance.Resolve<T>()); }
 }

 protected T DesignTimeViewModel
 {
 set { designTimeViewModel = value; }
 get { return designTimeViewModel; }
 }
 }
}

We start by declaring an abstract class that takes a generic type parameter, which
represents the interface type of the View Model that we are trying to locate. Once again,
note the generic type constraint declared on the generic type parameter that specifies that
the type used must be a class. This is now required because this class calls the Resolve
method of the DependencyManager class and that has the same constraint declared upon
it.

We have two internal members of the relevant type of View Model interface that back the
properties with the same names. There's one for our runtime View Model and one for our
design time View Model. The third View Model property of the same type is the one that
we will data-bind to from Views and it uses our IsDesignTime property to determine
which View Model to return.

A nice touch in this class is that it does a lot of the connection work for the developers. They
don't need to concern themselves with the implementation of the IsDesignTime property,
and this base class will even attempt to automatically resolve the concrete View Model
dependency for the runtime View Model property. Therefore, the developer need only
declare the following code for each View Model to take advantage of this functionality:

using CompanyName.ApplicationName.ViewModels;
using CompanyName.ApplicationName.ViewModels.Interfaces;

Writing Custom Application Frameworks Chapter 3

[124]

namespace CompanyName.ApplicationName.Views.ViewModelLocators
{
 public class UserViewModelLocator : BaseViewModelLocator<IUserViewModel>
 {
 public UserViewModelLocator()
 {
 DesignTimeViewModel = new MockUserViewModel();
 }
 }
}

It could be set up in the UI with very little difference to our original locator version:

<UserControl x:Class="CompanyName.ApplicationName.Views.UserView"
 ...
 <UserControl.Resources>
 <Locators:UserViewModelLocator x:Key="ViewModelLocator" />
 </UserControl.Resources>
 <UserControl.DataContext>
 <Binding Path="ViewModel" Source="{StaticResource ViewModelLocator}" />
 </UserControl.DataContext>
 ...
</UserControl>

Note that although this should work automatically in newer versions of Visual Studio, you
may need to provide a helping hand to the WPF Designer in older versions. The
mc:Ignorable attribute specifies which XAML namespace prefixes encountered in a
markup file may be ignored by an XAML processor and the d XAML namespace is used by
the Designer, so we can specify a DataContext location to it directly at design time:

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d" d:DataContext="{Binding ViewModel,
 Source={StaticResource ViewModelLocator}}"

While there is a clear benefit to this arrangement, as always, we have to weigh up whether
the cost of any such abstractions will be worth the benefits. For some, the cost of extracting
an interface, declaring a mock version of it to use at design time, and creating a View Model
Locator for each View Model will definitely be worth the benefit of designing Views that
visualize their data.

For others, it simply won't be worth it. Each time we add a level of abstraction, we have
more work to achieve to arrive at the same end goal. We need to decide whether each
abstraction is viable in our own situations and build our application frameworks
accordingly.

Writing Custom Application Frameworks Chapter 3

[125]

Summary
We've now investigated the benefit of having an application framework and started
constructing our own. We've discovered a variety of different ways to encapsulate our
required functionality into our framework and know which situations to use each in. After
exploring a number of manager classes, we have also begun to expose functionality from
external sources, but without being tied to them.

We've managed to maintain and improve the Separation of Concerns that our application
requires and should now be able to detach the various application components and run
them independently of each other. We are also able to provide our View designers with
mock data at design time, while maintaining loose coupling at runtime.

In the next chapter, we will thoroughly examine the essential topic of data binding, one of
the very few requirements of the MVVM pattern. We'll comprehensively cover the wide
variety of binding syntax, both long and short hand notation, discover why bindings fail to
work at certain times, and get a better understanding of how to display our data exactly the
way we want.

4
Becoming Proficient with Data

Binding

In this chapter, we'll investigate the data binding syntax that is used to connect our data
sources to our UI controls. We'll examine how to declare Dependency Properties, along
with all of the various options that we have when doing that. We'll find out about the scope
of declared bindings and unravel the finer details of data templates.

It is the data binding in WPF that enables it to work so well with the MVVM pattern. It
provides the connection for two-way communication between the View and the View
Models components. Yet this abstraction can often lead to confusion and make tracking
down problems more difficult than when using traditional methods of UI to business logic
communication.

As data binding is such an important part of the MVVM pattern, we'll cover this topic
thoroughly, from the basics to advanced concepts, and we'll ensure that we are able to
fulfill any binding requirements that we may receive.

Data binding basics
In WPF, we use the Binding class to create our bindings. In general, it is fair to say that
every binding will contain four constituent parts. Let's take a look at them now:

Becoming Proficient with Data Binding Chapter 4

[127]

The first is the binding source; typically, this will be one of our View Models.
The second is the path to the property from the source object that we would like
to data bind to.
The third is the binding target; this will typically be a UI control.
The fourth is the path to the property of the binding target that we want to
data bind to.

If one of our bindings does not work, it is most likely that one of these four things has not
been set correctly. It is important to stress that the target property will typically be from a
UI control, because there is a data binding rule that states that the binding target must be a
Dependency Property. The properties of most UI controls are Dependency Properties, and
so, this rule simply enforces that data normally travels in the direction from our View
Model data sources to the binding target UI controls.

We'll examine the direction of data bound data traversal later in the chapter, but let's first
focus on the syntax that is used to specify the value of the Binding.Path property.

Binding path syntax
Bindings can be declared either in longhand, defining an actual Binding element in the
XAML, or in shorthand, using the markup language that is translated to a Binding element
for us by the XAML. We'll primarily focus on the shorthand notation, as that is what we
will predominantly use throughout the book.

The Binding.Path property is of type PropertyPath. This type supports a unique syntax
that can be expressed in XAML using a XAML markup extension. While it can be confusing
at times, there are specific rules that we can learn to make it easier. Let's investigate.

To start with, let's understand that the binding path is relative to the binding source and
that the binding source is typically set by the DataContext property, or by the path itself.
In order to bind to the whole binding source, we can specify our binding like this:

{Binding Path=.}

It can also be specified like this:

{Binding .}

Most simply, we can specify our binding like this:

{Binding}

Becoming Proficient with Data Binding Chapter 4

[128]

Note that explicitly declaring the Path property name in this syntax is optional when the
path value is declared first. The three preceding examples are all equal. We will omit the
Path property declaration in the bindings in this book for brevity. Let's now see the
remaining property path syntax mini-language.

To data bind to most property paths, we use the same notation as we use in code. For
example, when binding directly to the property of a data bound object, we just use the
property name:

{Binding PropertyName}

To data bind to the property of an object that is directly referenced by a property of our
binding source, we again use the same syntax that we do in code. This is known as indirect
property targeting:

{Binding PropertyName.AnotherPropertyName}

Similarly, when data binding to an item in a collection, or a property of a collection item,
we use the indexing notation from code. For example, this is how we access a property
from the first item in our data bound binding source:

{Binding [0].PropertyName}

Of course, if we want to access the second item, we use a key of 1 and use a key value of 2
if we want the third item and so on. Likewise, to indirectly target a property of a collection
item, where the collection is a property of our binding source, we use the following syntax:

{Binding CollectionPropertyName[0].PropertyName}

As you can see, we are freely able to combine these various syntactical options to generate
more complex binding paths. Multi-dimensional collections are also accessed in the same
way as we refer to them in code:

{Binding CollectionPropertyName[0, 0].PropertyName}
{Binding CollectionPropertyName[0, 0, 0].PropertyName}
...

While discussing data binding to collections, note that there is a special forward slash (/)
syntax that we can use to access the selected item at any time:

{Binding CollectionPropertyName/PropertyName}

Becoming Proficient with Data Binding Chapter 4

[129]

This particular example would bind to the PropertyName property of the current item of
the collection specified by the CollectionPropertyName property. Let's take a quick look
at a more practical example:

<StackPanel>
 <ListBox ItemsSource="{Binding Users}"
 IsSynchronizedWithCurrentItem="True" />
 <TextBlock Text="Selected User's Name:" />
 <TextBlock Text="{Binding Users/Name}" />
</StackPanel>

In this basic example using our UsersViewModel, we data bind the Users collection to a
listbox. Underneath, we output the value of the Name property from the currently selected
item. Note the setting of the IsSynchronizedWithCurrentItem property, as without it,
this forward slash binding would not work correctly.

Try removing the IsSynchronizedWithCurrentItem property from the example and
running the application again and you will see that the current user's name will be output
initially, but not updated after changes to the selected item.

Setting this property to True will ensure that the ItemCollection.CurrentItem
property from the ListBox.Items collection is updated each time the selection changes.
Note that we could also achieve this same output using the ListBox.SelectedItem
property instead of this forward slash notation:

<StackPanel>
 <ListBox Name="ListBox" ItemsSource="{Binding Users}"
 IsSynchronizedWithCurrentItem="True" />
 <TextBlock Text="Selected User's Name:" />
 <TextBlock Text="{Binding SelectedItem.Name, ElementName=ListBox}" />
</StackPanel>

The IsSynchronizedWithCurrentItem property is now not needed to update the
selected user's name in the TextBlock, because the SelectedItem property will take care
of that. However, setting it to True in this case will ensure that the first item in the
ListBox is selected and that the TextBlock will initially output the name of that item's
user. Let's continue looking at the forward slash notation.

If you are trying to data bind to a property of an item in a collection, where the collection is
itself an item of a parent collection, we can use the forward slash notation multiple times in
a single binding path:

{Binding CollectionPropertyName/InnerCollectionPropertyName/PropertyName}

Becoming Proficient with Data Binding Chapter 4

[130]

To clarify, this path would bind to the PropertyName property of the selected item of the
collection specified by the InnerCollectionPropertyName property, which itself is the
selected item of the collection specified by the CollectionPropertyName property.

Let's move on from collections now, to Attached Properties. In order to data bind to an
Attached Property, we need to use a slightly different syntax from that used in code; we
need to enclose the property name in parenthesis, along with the class name:

{Binding (ClassName.PropertyName)}

Note that when the Attached Property is a custom-declared property, we must include the
XAML namespace prefix inside the parenthesis with its separating colon:

{Binding (XmlNamespacePrefix:ClassName.PropertyName)}

Typically, when binding to Attached Properties, we also need to specify the binding target
as well as the target property. The binding target will generally either be the object that the
binding is set on, or another UI element, so we tend to see the RelativeSource or
ElementName properties being used in these situations:

{Binding Path=(Attached:TextBoxProperties.Label),
 RelativeSource={RelativeSource AncestorType={x:Type TextBox}}}

We'll see an extended version of this example later in the book, but in short, it binds to the
TextBoxProperties.Label Attached Property of the parent control of type TextBox. It is
called from within a ControlTemplate and so, the parent textbox is the templated parent
of the control that is being data bound.

Escaping invalid characters
When using the PropertyPath syntax mini-language, there may be the odd occasion when
we need to escape certain characters that are used in the syntax. In general, the backslash
(\) is used as the escape character and the only characters that we need to escape are as
follows.

The most common character that we may need to escape in our bind paths is the closing
curly bracket (}), which signals the end of a markup section. Also, if you need to use an
actual backslash in your binding path, then you must escape it by preceding it with another
backslash.

The only two other characters that we need to escape are the equals sign (=) and the comma
character (,), which are both used to define binding paths. All other characters that we are
likely to use in a binding path are deemed to be valid.

Becoming Proficient with Data Binding Chapter 4

[131]

Note that there is a special character to use if we need to escape a character when inside an
indexer binding expression. In these cases, instead of using the backslash character, we
need to use the caret character (^) as the escape character.

Also note that when explicitly declaring bindings in XAML, we need to escape the
ampersand (&) and the greater than sign (>) by replacing them with their XML Entity forms.
If you need to use these characters, then replace the ampersand with & and replace the
greater than sign with >.

Exploring the Binding class
The Binding class has more properties than we have space to discuss here, but we'll cover
the most important ones in detail shortly, and briefly look at other notable properties
momentarily. The Binding class is the top-level class in each binding, but internally it uses
a lower-level class that maintains the connection between the binding source and binding
target.

The BindingExpression class is that underlying object. When using MVVM, developers
do not typically access this inner class, as we tend to keep our functionality in our View
Models. However, if we are writing custom controls, then it can be useful to be aware of it.

It can be used to programmatically update the associated binding source in certain
circumstances and we'll find out about that later in the chapter. For now, let's focus on what
the Binding class can do for us.

In .NET 4.5, a great new property was added to the Binding class. The Delay property
enables us to specify an amount of time in milliseconds with which to delay the update of
the binding source after a change has been made to the binding target property value.

This is really useful if we are performing some heavy computational validation or other
processing dependent upon the user's input in a TextBox element for example. To clarify
this functionality further, this delay is actually restarted each time the data bound property
value changes, or each key press in our example. It is typically used to update the binding
source in chunks, each time the user pauses, or completes typing, somewhat like buffering:

<TextBox Text="{Binding Description,
 UpdateSourceTrigger=PropertyChanged, Delay=400}" />

The FallbackValue property is another useful property when it comes to performance. In
order to return a value from each binding, the WPF Framework does up to four things. The
first is to simply validate the target property type with the data bound value. If successful,
it will then try to resolve the binding path.

Becoming Proficient with Data Binding Chapter 4

[132]

Most of the time, this will work, but if not, it will then attempt to find a converter to return
the value. If it can't find one, or the located converter returns the
DependencyProperty.UnsetValue value, it will then look to see if the FallbackValue
property has a value to provide it with. If there is no fallback value, then a lookup is
required to find the default value of the target Dependency Property.

By setting the FallbackValue property, we can do two things to improve performance,
albeit in a slight way. The first is that, it will stop the WPF Framework from performing the
lookup of the default value of the target Dependency Property. The second is that it will
prevent trace statements from being fed to the Output window in Visual Studio and to any
other trace outputs that have been setup.

The TargetNullValue property is similar to the FallbackValue property in that it
enables us to provide some output when there is no data bound value from the binding
source. The difference is that the FallbackValue property value is output when a data
bound value cannot be resolved, while the TargetNullValue property value is used when
the successfully resolved data bound value is null.

We can use this functionality to display a more humanized value than null, or even to
provide a default message in our textbox controls for example. To do this, we could set our
data bound string properties to null and set a suitable value to the TargetNullValue
property:

<TextBox Text="{Binding Name, TargetNullValue='Please enter your name'}" />

Of course, this message will actually appear in the TextBox control, so it's not an ideal way
of providing this functionality. We'll see a better example of this later in the book, but now,
let's continue our exploration of the Binding class.

If we have any properties in our View Model that access their data asynchronously, or if
they are calculated by a heavy computational process, then we need to set the IsAsync
method to True on the binding:

<Image Source="{Binding InternetSource, IsAsync=True,
 FallbackValue='pack://application:,,,/CompanyName.ApplicationName;
 component/Images/Default.png'}" />

This stops the UI from being blocked while waiting for the data bound property to be
calculated, or otherwise resolved. Until the binding source is resolved, the fallback value is
used, if set, or the default value will be used otherwise. In this example, we are providing a
default image to be displayed until the actual image is downloaded from the internet and
the binding source is resolved.

Becoming Proficient with Data Binding Chapter 4

[133]

Another useful property of the Binding class is the StringFormat property. As the name
hints, this uses the string.Format method internally to format our data bound text
output. There are, however, a few caveats to using this functionality. The first is that we can
only use a single format item, that is represented by the single data bound value in a
normal binding. We'll find out how to use multiple values later in the chapter.

Secondly, we need to declare our format carefully, as curly brackets are used by the
markup extensions and we cannot use the double quote characters ("), as the binding is
already declared within double quotes. One solution is to use single quotes to surround our
format string:

<TextBlock Text="{Binding Price, StringFormat='{0:C2}'}" />

Another option is to escape the format by preceding it with a pair of curly brackets:

<TextBlock Text="{Binding Price, StringFormat={}{0:C2}}" />

Most of the useful binding properties have now been discussed here, but it should be noted
that there are a number of properties in the Binding class that are not typically used when
building a WPF application with MVVM. This is because they involve event handlers and
we do not normally implement event handlers when using MVVM.

For example, the three NotifyOnSourceUpdated, NotifyOnTargetUpdated and
NotifyOnValidationError properties relate to the raising of the
Binding.SourceUpdated, Binding.TargetUpdated and Validation.Error Attached
Events.

Likewise, the three ValidatesOnDataErrors, ValidatesOnExceptions,
ValidatesOnNotifyDataErrors and ValidationRules properties all relate to the use
of the ValidationRule class. This is a very UI-related way of validating, but this puts our
business logic right into our Views component.

When using MVVM, we want to avoid this blending of components. We therefore tend to
work with data elements rather than UI elements, and so we perform these kind of duties
in our Data Model and/or View Model classes instead. We'll see this in Chapter 9,
Implementing Responsive Data Validation, later in the book, but now let's take a deeper look at
the most important properties of the Binding class.

Becoming Proficient with Data Binding Chapter 4

[134]

Directing data bound traffic
The direction of data traversal in each binding is specified by the Binding.Mode property.
There are four distinct directional instances declared in the BindingMode enumeration,
plus an additional value. Let's first take a look at the directional values and what they
represent.

The first and most common value reflects the most common situation, where data flows
from the binding source, say, one of our View Models, to the binding target, represented by
a UI control. This binding mode is called One-Way and is specified by the OneWay
enumeration instance. This mode is used primarily for display only, or read-only purposes,
and situations where the data bound values cannot be altered in the UI.

The next most common direction of travel is represented by the TwoWay enumeration
instance and signifies that data is free to travel both from our View Models to the UI
controls and also in the opposite direction. This is the most commonly used mode when
data binding to form controls, when we want the users' changes to be reflected in our View
Models.

The third directional enumeration instance is the OneWayToSource instance and is the
opposite to the OneWay instance. That is, it specifies that data can only travel from the
binding target, represented by a UI control, to the binding source, for example, one of our
View Models. This mode is also useful for capturing user inputted date, when we don't
need to alter the data bound values.

The final directional instance is similar to the OneWay instance, except that it only works
once and is represented by the OneTime instance. While this mode will indeed only work
one time, upon instantiation of its containing control, it will actually also update its value
each time the DataContext property of the relevant binding is set. However, its purpose is
that it provides better performance than the OneWay member and is only suitable for
binding to non-changing data, so if the data will be updated, this is not the correct
directional instance to use.

The final instance is named Default and as the name hints, is the default value of the
Binding.Mode enumeration. It directs the binding to use the binding mode that was
declared from the specified target property. When each Dependency Property is declared,
we can specify whether a One or Two-Way binding mode should be used by default. If this
is not specifically declared, then the property will be assigned a One-Way mode. We'll see
this explained in more detail later in this chapter.

Becoming Proficient with Data Binding Chapter 4

[135]

Binding to different sources
We generally set the binding source using the FrameworkElement.DataContext
property. All UI controls extend the FrameworkElement class, so we can set our binding
sources on any of them. This must be set for a binding to work, although it can be specified
in the Path property, or inherited from ancestor controls, so it does not have to be explicitly
set. Take a look at this simple example, which assumes that a suitable binding source has
been correctly set on the parent control:

<StackPanel>
 <TextBlock DataContext="{Binding User}" Text="{Binding Name}" />
 <TextBlock DataContext="{Binding User}" Text="{Binding Age}" />
</StackPanel>

Here, we set the binding source of the first TextBlock to a User object and the path to the
Name property from that source. The second is set likewise, but with the binding source
path pointing to the Age property instead. Note that we have set the DataContext
property to a User object on each TextBox control individually.

While this is perfectly valid XAML, you can imagine how tiresome it would be to do this on
every control that we want to data bind to in a large form. As such, we tend to take
advantage of the fact that the DataContext property can inherit its value from any of its
ancestor controls. In this way, we can simplify this code by setting the DataContext on the
parent control instead:

<StackPanel DataContext="{Binding User}">
 <TextBlock Text="{Binding Name}" />
 <TextBlock Text="{Binding Age}" />
</StackPanel>

In fact, when developing each Window or UserControl, it is customary to set the
DataContext on these top-level controls, so that every contained control will have access
to the same binding source. This is why we create a View Model for each Window or
UserControl and specify that each View Model is responsible for providing all of the data
and functionality that its related View requires.

Becoming Proficient with Data Binding Chapter 4

[136]

There are a few alternative ways of specifying a binding source, other than setting the
DataContext property. One way is to use the Source property of the binding and this
enables us to explicitly override the binding source that is inherited from the parent
DataContext, if one was set. Using the Source property, we are also able to data bind to
resources, as we saw in our View Model Locator example, or static values, as shown in the
following snippet:

<TextBlock Text="{Binding Source={x:Static System:DateTime.Today},
 Mode=OneTime, StringFormat='{}© {0:yyyy} CompanyName'}" />

Another way involves the use of the RelativeSource property of the binding. Using this
incredibly useful property of type RelativeSource, we can specify that we want to use
the target control, or a parent of that control as the binding source.

It also enables us to override the binding source from the DataContext and is often
essential when trying to data bind to View Model properties from DataTemplate
elements. Let's adjust the earlier DataTemplate for our User Data Model to output a
property from its normal DataContext that is set by the DataTemplate, and one from the
View Model that is set as the DataContext of the parent control, using the AncestorType
property of the RelativeSource class:

<DataTemplate DataType="{x:Type DataModels:User}">
 <StackPanel>
 <TextBlock Text="{Binding Name}" />
 <TextBlock Text="{Binding DataContext.UserCount,
 RelativeSource={RelativeSource Mode=FindAncestor,
 AncestorType={x:Type Views:UserView}}}" />
 </StackPanel>
</DataTemplate>

Note that setting the Mode property, that specifies the relative position of the binding
source compared to the binding target, is optional here. Using the AncestorType property
implicitly sets the Mode property to the FindAncestor instance, so we can declare the
same binding without it, like this:

<TextBlock Text="{Binding DataContext.UserCount,
 RelativeSource={RelativeSource
 AncestorType={x:Type Views:UserView}}}" />

Becoming Proficient with Data Binding Chapter 4

[137]

The Mode property is of the RelativeSourceMode enumeration type, which has four
members. We've already seen an example of one instance, the FindAncestor member,
although this can be extended using the related RelativeSource.AncestorLevel
property, which specifies which level of ancestor in which to look for the binding source.
This property is only really useful if a control has multiple ancestors of the same type, as in
this following simplified example:

<StackPanel Tag="Outer">
 ...
 <StackPanel Orientation="Horizontal" Tag="Inner">
 <TextBlock Text="{Binding Tag, RelativeSource={RelativeSource
 Mode=FindAncestor, AncestorType={x:Type StackPanel},
 AncestorLevel=2}}" />
 ...
 </StackPanel>
</StackPanel>

The TextBox in this example will output the word "Outer" at runtime because we have
declared that the binding source should be the second ancestor of type StackPanel. If the
AncestorLevel property had been set to one or omitted from the binding, then the
TextBox would output the word "Inner" at runtime.

The next RelativeSourceMode enumeration instance is Self, which specifies that the
binding source is the same object as the binding target. Note that when using the
RelativeSource.Self property, the Mode property is implicitly set to the Self instance.
We could use this property to data bind one property of a UI control to another, as in this
following example, which sets the control's width value to its Height property to ensure
that it remains a square regardless of the width:

<Rectangle Height="{Binding ActualWidth,
 RelativeSource={RelativeSource Self}}" Fill="Red" />

The RelativeSource.TemplatedParent property is only used to access the properties of
controls from inside a ControlTemplate. The templated parent refers to the object that has
the ControlTemplate applied to it. When using the TemplatedParent property, the
Mode property is implicitly set to the TemplatedParent instance of the
RelativeSourceMode enumeration. Let's see an example:

<ControlTemplate x:Key="ProgressBar" TargetType="{x:Type ProgressBar}">
 ...
 <TextBlock Text="{Binding Value,
 RelativeSource={RelativeSource TemplatedParent}}" />
 ...
</ControlTemplate>

Becoming Proficient with Data Binding Chapter 4

[138]

In this example, the templated parent is the instance of the ProgressBar that will have this
template applied to it and so, using the TemplatedParent property, we are able to access
the various properties of the ProgressBar class from within the ControlTemplate.
Furthermore, any binding source that is data bound to the Value property of the templated
parent will also be data bound to the Text property of this internal TextBox element.

Moving on to the final RelativeSource property, PreviousData is only really useful
when defining a DataTemplate for items in a collection. It is used to set the previous item
in the collection as the binding source. While not often used, there can be situations where
we need to compare values between neighboring items in a collection and we'll see a full
example of this later in this chapter.

Although a far simpler option, the ElementName property of the Binding class also
enables us to override the binding source set by the DataContext. It is used to data bind
the property of one UI control to either the property of another control, or another property
on the same control. The only requirement to use this property is that we need to name the
element that we want to data bind to in our current control. Let's see an example:

<StackPanel Orientation="Horizontal" Margin="20">
 <CheckBox Name="Checkbox" Content="Service" Margin="0,0,10,0" />
 <TextBox Text="{Binding Service}"
 Visibility="{Binding IsChecked, ElementName=Checkbox,
 Converter={StaticResource BoolToVisibilityConverter}}" />
</StackPanel>

In this example, we have a CheckBox element and a TextBlock element. The Visibility
property of the TextBlock element is data bound to the IsChecked property of the
CheckBox element and we make use of the BoolToVisibilityConverter class that we
saw earlier to convert the bool value to a Visibility instance. Therefore, when the user
checks the CheckBox element, the TextBlock element will become visible.

The ElementName property can also be used as a shortcut to access the parent control's
DataContext. If we name our View This for example, then we can use the ElementName
property from within a data template to data bind to a property from the parent View
Model:

<DataTemplate DataType="{x:Type DataModels:User}">
 <StackPanel>
 <TextBlock Text="{Binding Name}" />
 <TextBlock Text="{Binding DataContext.UserCount, ElementName=This}" />
 </StackPanel>
</DataTemplate>

Becoming Proficient with Data Binding Chapter 4

[139]

When specifying these alternative binding sources, it is important to know that we can only
use one of these three different methods at once. If we were to set more than one of the
binding Source, RelativeSource, or ElementName properties, then an exception would
be thrown from the binding.

Binding with priority
On the odd occasion, we may need to specify a number of source binding paths and want
to map them to a single binding target property. One way that we can do this is to use the
MultiBinding class and we'll see an example of this in the last section of this chapter.
However, there is an alternative class that we can use that provides us with some
additional functionality.

The PriorityBinding class enables us to specify multiple bindings and gives each a
priority, with the bindings that are declared first having the highest priority. The special
functionality of this class is that it will display the value from the first binding that returns a
valid value and if that is not the binding with the highest priority, it will then update the
display with the value from the highest priority binding when it is successfully resolved.

To clarify further, this enables us to specify a binding to a normal property that will resolve
immediately, while the actual value that we want to data bind to is being downloaded,
calculated, or otherwise being resolved over time. This enables us to supply a default image
source while the actual required image is being downloaded, or to output a message until a
calculated value is ready for display. Let's look at a simple XAML example:

<TextBlock>
 <TextBlock.Text>
 <PriorityBinding>
 <Binding Path="SlowString" IsAsync="True" />
 <Binding Path="FastString" Mode="OneWay" />
 </PriorityBinding>
 </TextBlock.Text>
</TextBlock>

In the preceding example, we set the PriorityBinding on the TextBlock.Text property
and inside, specify two bindings. The first has the higher priority and has the actual
property value that we want to display. Note that we set the IsAsync property to True, to
specify that this binding will take some time to resolve and that it should not block the UI
thread.

Becoming Proficient with Data Binding Chapter 4

[140]

The second binding is data bound to a normal property using a One-Way binding that
simply outputs a message:

public string FastString
{
 get { return "The value is being calculated..."; }
}

By using the PriorityBinding element, this message will be output instantly and then
updated with the actual value from the SlowString property when it is ready. Let's now
move on and investigate one further type of Binding class.

Binding from within control templates
A TemplateBinding is a particular type of binding that is used within ControlTemplate
elements in order to data bind to the properties of the type that is being templated. It is
very similar to the RelativeSource.TemplatedParent property that we discussed
earlier:

<ControlTemplate x:Key="ProgressBar" TargetType="{x:Type ProgressBar}">
 ...
 <TextBlock Text="{TemplateBinding Value}" />
 ...
</ControlTemplate>

In this example from earlier that we have edited slightly, we see that declaring a
TemplateBinding is far more straightforward and less verbose than performing the same
binding using the RelativeSource.TemplatedParent property. Let's remind ourselves
what that looked like:

<TextBlock Text="{Binding Value,
 RelativeSource={RelativeSource TemplatedParent}}" />

If possible, it is generally preferable to use a TemplateBinding instead of the
RelativeSource.TemplatedParent property and although they perform the same
connection in the binding, there are a few differences between them. For example, a
TemplateBinding is evaluated at compile time, which enables faster instantiation of
control templates, whereas a TemplatedParent binding is not evaluated until runtime.

Becoming Proficient with Data Binding Chapter 4

[141]

Furthermore, it is a simpler form of binding and is missing a number of the Binding class
properties, such as StringFormat and Delay. In addition, it places the extra constraints on
the user, that it is permanently set to have a binding mode of OneWay and both binding
target and binding source must be Dependency Properties. It was designed to be used in a
single place with a single purpose and in that situation, it does its job well and more
efficiently than its counterpart.

Binding source changes
At times, we may need to make changes to our binding sources and have those changes
propagate to the binding target controls. We may want to set default values on a new form,
clear old form values, or even set form labels from our View Models. In order to do this,
our View Models must implement the INotifyPropertyChanged interface and this is why
we build this implementation into our base View Model class.

When we data bind a binding source to a control in the UI, an event handler is attached to
the PropertyChanged event of the source object. When a notification of a change to the
property that is specified by the binding source property path is received, the control is
updated with the new value.

It should be noted that the PropertyChanged event of the binding source will be null if
no handler has specifically been attached and none of its properties have been data bound
to UI controls. It is for this reason that we must always check for null, before raising this
event.

All of the binding modes work in the direction of binding source to binding target, except
for the OneWayToSource instance. However, only this and the TwoWay instance of the
Binding.Mode enumeration propagate changes in the direction of the binding target to the
binding source.

When the binding is working in either of these modes, it attaches a handler to the target
control to listen for changes to the target property. When it receives notification of a change
to the target property, its behavior is determined by the value of the binding's
UpdateSourceTrigger property.

This property is of the enumeration type UpdateSourceTrigger, which has four
members. The most common is the PropertyChanged instance and this specifies that the
source property should be updated as soon as the target property has changed. This is the
default value for most controls.

Becoming Proficient with Data Binding Chapter 4

[142]

The LostFocus member is the next most common value and this specifies that the binding
should update the binding source when the user moves focus from the data bound control.
This option can be useful when we want to trigger validation once the user has completed
entry in each textbox, rather than as they type.

The Explicit instance will not update the binding source without explicit instruction to
do so. As we need to programmatically call the UpdateSource method of the internal
BindingExpression object in order to propagate the changes to the binding source, this
option is not generally used in our normal Views.

Instead, if used at all, we would find it in our CustomControl classes. Note that calling the
UpdateSource method will do nothing if the binding mode is not set to one of the
OneWayToSource or TwoWay instances.

If we had an instance of a textbox and we wanted to explicitly update the binding source
that was data bound to its Text property, we can access the lower-level
BindingExpression object from the BindingOperations.GetBindingExpression
method and call its UpdateSource method:

BindingExpression bindingExpression =
 BindingOperations.GetBindingExpression(textBox, TextBox.TextProperty);
bindingExpression.UpdateSource();

Alternatively, if our binding target control class extends the FrameworkElement class and
most do, then we can simply call the GetBindingExpression method on it directly and
pass in the Dependency Property key that we want to update the binding from:

textBox.GetBindingExpression(TextBox.TextProperty);

The last member of the UpdateSourceTrigger enumeration is the Default instance. This
is similar to the Default instance of the Binding.Mode enumeration in that it uses the
value specified by each target Dependency Property and is the default value of the
UpdateSourceTrigger property. Again, we'll find out how to set the metadata for
Dependency Properties later in this chapter.

Converting data bound values
There are many times when developing a WPF application, when we need to convert a data
bound property value to a different type. For example, we might want to control the
visibility of some UI elements with a bool property in our View Model, so that we can
avoid having the UI-related Visibility enumeration instance in it.

Becoming Proficient with Data Binding Chapter 4

[143]

We might want to convert different enumeration members to different Brush objects, or
collections to string representations of the contained collection items. We've already seen
a number of examples of the IValueConverter interface, but let's now take a bit more of a
thorough look:

public interface IValueConverter
{
 object Convert(object value, Type targetType, object parameter,
 CultureInfo culture);
 object ConvertBack(object value, Type targetType, object parameter,
 CultureInfo culture);
}

As we've already seen, the value input parameter of type object is the data bound value
of the binding. The object return type relates to the converted value that we want to
return. The targetType input parameter specifies the type of the binding target property
and is typically used to validate the input value to ensure that the converter is being used
with the expected type of data.

The parameter input parameter is optionally used to pass an additional value through to
the converter. If used, its value can be set using the Binding.ConverterParameter
property. Finally, the culture input parameter provides us with a CultureInfo object to
correctly format textual output, when working in a culturally-sensitive application. We'll
return to this in a moment, but let's first look at an example of a converter that uses the
parameter input parameter:

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 [ValueConversion(typeof(Enum), typeof(bool))]
 public class EnumToBoolConverter : IValueConverter
 {
 public bool IsInverted { get; set; }

 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 if (value == null || parameter == null || (value.GetType() !=
 typeof(Enum) && value.GetType().BaseType != typeof(Enum)))
 return DependencyProperty.UnsetValue;
 string enumValue = value.ToString();
 string targetValue = parameter.ToString();

Becoming Proficient with Data Binding Chapter 4

[144]

 bool boolValue = enumValue.Equals(targetValue,
 StringComparison.InvariantCultureIgnoreCase);
 return IsInverted ? !boolValue : boolValue;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (value == null || parameter == null)
 return DependencyProperty.UnsetValue;
 bool boolValue = (bool)value;
 string targetValue = parameter.ToString();
 if ((boolValue && !IsInverted) || (!boolValue && IsInverted))
 return Enum.Parse(targetType, targetValue);
 return DependencyProperty.UnsetValue;
 }
 }
}

The idea of this converter is that we can data bind an enumeration property to a
RadioButton or CheckBox control that specifies the name of a particular member. If the
value of the data bound property matches the specified member, then the converter will
return true and check the control. For all other enumeration members, the control will be
unchecked. We could then specify a different member in each of a group of RadioButton
controls, so that each member could be set.

In the class, we start by specifying the data types that are involved in the implementation of
the converter in the ValueConversion attribute. Next, we see the IsInverted property
that we saw in the BaseVisibilityConverter class that enables us to invert the output
of the converter.

In the Convert method, we first check the validity of our value and parameter input
parameters, and return the DependencyProperty.UnsetValue value if either are invalid.
For valid values, we convert both parameters to their string representations. We then
create a bool value by comparing the two string values. Once we have our bool value,
we use it in conjunction with the IsInverted property to return the output value.

As with our other enumeration converter example, the ConvertBack method
implementation is a little different again, as we are unable to return the correct
enumeration instance for a false value; it could be any value except the value specified by
the parameter input parameter.

Becoming Proficient with Data Binding Chapter 4

[145]

As such, we are only able to return the specified enumeration instance if the data bound
value is true and the IsInverted property is false, or if it is false and the IsInverted
property is true. For all other input values, we simply return the
DependencyProperty.UnsetValue property, which is preferred by the property system
rather than the null value.

Let's see an example of this in use, with the BitRate enumeration that we saw in the
previous chapter. Let's first look at the simple View Model:

using System.Collections.ObjectModel;
using CompanyName.ApplicationName.DataModels.Enums;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.ViewModels
{
 public class BitRateViewModel : BaseViewModel
 {
 private ObservableCollection<BitRate> bitRates =
 new ObservableCollection<BitRate>();
 private BitRate bitRate = BitRate.Sixteen;

 public BitRateViewModel()
 {
 bitRates.FillWithMembers();
 }

 public ObservableCollection<BitRate> BitRates
 {
 get { return bitRates; }
 set { if (bitRates != value) { bitRates = value;
 NotifyPropertyChanged(); } }
 }

 public BitRate BitRate
 {
 get { return bitRate; }
 set { if (bitRate != value) { bitRate = value;
 NotifyPropertyChanged(); } }
 }
 }
}

This class just contains a collection of type BitRate, which will hold all possible members
and a selection property of type BitRate, which we will data bind to the various
RadioButton elements using our new converter.

Becoming Proficient with Data Binding Chapter 4

[146]

Note the use of the FillWithMembers Extension Method in the constructor. Let's see
that first:

public static void FillWithMembers<T>(this ICollection<T> collection)
{
 if (typeof(T).BaseType != typeof(Enum))
 throw new ArgumentException("The FillWithMembers<T> method can only be
 called with an enum as the generic type.");
 collection.Clear();
 foreach (string name in Enum.GetNames(typeof(T)))
 collection.Add((T)Enum.Parse(typeof(T), name));
}

In the FillWithMembers Extension Method, we first check that the collection that the
method is called on is of an enumeration type and throw an ArgumentException if it's
not. We then clear the collection, in case it has any pre-existing items in it. Finally, we
iterate through the result of the Enum.GetNames method, parsing each string name to the
relevant enumeration member and casting it to the correct type, before adding it to the
collection.

Let's now see the XAML for the View:

<UserControl x:Class="CompanyName.ApplicationName.Views.BitRateView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters">
 <UserControl.Resources>
 <Converters:EnumToBoolConverter x:Key="EnumToBoolConverter" />
 </UserControl.Resources>
 <GroupBox Header="Audio Quality" HorizontalAlignment="Left"
 VerticalAlignment="Top" Padding="5">
 <StackPanel>
 <RadioButton Content="16 bits" IsChecked="{Binding BitRate,
 Converter={StaticResource EnumToBoolConverter},
 ConverterParameter=Sixteen}" VerticalContentAlignment="Center" />
 <RadioButton Content="24 bits" IsChecked="{Binding BitRate,
 Converter={StaticResource EnumToBoolConverter}, ConverterParameter=
 TwentyFour}" VerticalContentAlignment="Center" />
 <RadioButton Content="32 bits" IsChecked="{Binding BitRate,
 Converter={StaticResource EnumToBoolConverter},
 ConverterParameter=ThirtyTwo}" VerticalContentAlignment="Center" />
 </StackPanel>
 </GroupBox>
</UserControl>

Becoming Proficient with Data Binding Chapter 4

[147]

In this View, we set up the Converters XAML namespace prefix and then declare an
instance of the EnumToBoolConverter class in the Resources section. We then declare a
StackPanel containing three RadioButton elements inside a GroupBox. Each
RadioButton element is data bound to the same BitRate property from our View Model,
using the converter from the resources.

Each button specifies a different enumeration member in its binding's
ConverterParameter property and this is passed through to the converter in the
parameter input parameter. If a RadioButton is checked, its true value is passed to the
converter and converted to the value specified by its ConverterParameter value and the
BitRate property is updated with that value. The output of this code looks like the
following figure:

Note that if we had a large number of enumeration members, or the members were
changed regularly, declaring each one manually in the UI like this example might not be
such a good idea. In these cases, we could generate the same UI with less work, utilizing a
DataTemplate object. We'll see an example of this later in this chapter, but for now, let's
return to the input parameters of our converter.

The final input parameter in the Convert and ConvertBack methods is the culture
parameter of type CultureInfo. In non-international applications, we can simply ignore
this parameter, however if globalization plays a part in your application, then using this
parameter is essential.

It enables us to correctly format any textual output that we may have in our converter using
the object.ToString method and keep it in line with the rest of the text in the
application. We can also use it in the various Convert class methods to ensure that
numerals are also correctly output in the right format. Globalization is beyond the scope of
this book and so we'll move on now.

Becoming Proficient with Data Binding Chapter 4

[148]

Binding multiple sources to a single target
property
In WPF, there is another, more common way to data bind to multiple binding sources at
once and to perform some sort of conversion from the various values to a single output
value. In order to achieve this, we need to use a MultiBinding object in conjunction with a
class that implements the IMultiValueConverter interface.

The MultiBinding class enables us to declare multiple binding sources and a single
binding target. If the Mode or UpdateSourceTrigger properties of the MultiBinding
class are set, then their values are inherited by the contained binding elements, unless they
have different values set explicitly.

The values from the multiple binding sources can be combined in one of two ways; their
string representations can be output using the StringFormat property, or we can use a
class that implements the IMultiValueConverter interface to generate the output value.
This interface is very similar to the IValueConverter interface, but works with multiple
data bound values instead.

When implementing the IMultiValueConverter interface, we do not set the
ValueConversion attribute that we are accustomed to setting in the IValueConverter
implementations that we have created.

In the Convert method that we need to implement, the value input parameter of type
object from the IValueConverter interface is replaced by an object array named
values, which contains our input values.

In the ConvertBack method, we have an array of type Type for the types of the binding
targets and one of type object for the return types. Apart from these slight differences,
these two interfaces are the same. Let's look at an example to help clarify the situation.

Imagine a scenario where a healthcare application needs to display a patient's weight
measurements over time. It would be helpful if we could output an indicator of whether
each consecutive measurement was higher or lower than the previous one, to highlight any
unhealthy trends.

Becoming Proficient with Data Binding Chapter 4

[149]

This can be implemented using the RelativeSource.PreviousData property mentioned
earlier, a MultiBinding object and an IMultiValueConverter class. Let's first take a
look at how we implement the IMultiValueConverter interface:

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 public class HigherLowerConverter : IMultiValueConverter
 {
 public object Convert(object[] values, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (values == null || values.Length != 2 ||
 !(values[0] is int currentValue) ||
 !(values[1] is int previousValue))
 return DependencyProperty.UnsetValue;
 return currentValue > previousValue ? "->" : "<-";
 }

 public object[] ConvertBack(object value, Type[] targetTypes,
 object parameter, CultureInfo culture)
 {
 return new object[2] { DependencyProperty.UnsetValue,
 DependencyProperty.UnsetValue };
 }
 }
}

We start our implementation with the customary validation of the input values. In this
specific converter, we are expecting two values of type int, and so we use C# 6.0 Pattern
Matching to verify that before continuing. If valid, we compare our two pre-cast values,
returning the appropriate string-based direction arrow, dependent on the result of the
comparison.

As the ConvertBack method is not required for our example, we simply return an object
array that contains two DependencyProperty.UnsetValue values. Let's take a quick look
at our View Model next:

using System.Collections.Generic;

namespace CompanyName.ApplicationName.ViewModels
{

Becoming Proficient with Data Binding Chapter 4

[150]

 public class WeightMeasurementsViewModel : BaseViewModel
 {
 private List<int> weights =
 new List<int>() { 90, 89, 92, 91, 94, 95, 98, 99, 101 };

 public List<int> Weights
 {
 get { return weights; }
 set { weights = value; NotifyPropertyChanged(); }
 }
 }
}

Here, we have a very simple View Model, with just one field and property pair. We've just
hardcoded a few test values to demonstrate with. Let's now take a look at our View:

<UserControl
 x:Class="CompanyName.ApplicationName.Views.WeightMeasurementsView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters"
 xmlns:System="clr-namespace:System;assembly=mscorlib">
 <UserControl.Resources>
 <Converters:HigherLowerConverter x:Key="HigherLowerConverter" />
 </UserControl.Resources>
 <Border BorderBrush="Black" BorderThickness="1" CornerRadius="5"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 <ItemsControl ItemsSource="{Binding Weights}" Margin="20,20,0,20">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 <ItemsControl.ItemTemplate>
 <DataTemplate DataType="{x:Type System:Int32}">
 <StackPanel Margin="0,0,20,0">
 <TextBlock Text="{Binding}" />
 <TextBlock HorizontalAlignment="Center">
 <TextBlock.Text>
 <MultiBinding
 Converter="{StaticResource HigherLowerConverter}">
 <Binding />
 <Binding
 RelativeSource="{RelativeSource PreviousData}" />
 </MultiBinding>
 </TextBlock.Text>
 </TextBlock>

Becoming Proficient with Data Binding Chapter 4

[151]

 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </Border>
</UserControl>

After the Converters XAML namespace prefix and the declared HigherLowerConverter
element in the Resources section, we have a bordered ItemsControl that is data bound
to the Weights property of the View Model that is set as the DataContext of this View.
Next, we see a horizontal StackPanel element being used as the ItemsPanelTemplate in
the ItemsControl.ItemsPanel property. This simply makes the collection control
display items horizontally instead of vertically.

Note that in the following DataTemplate object, we need to specify the data type and so
need to import the System namespace from the mscorlib assembly to reference the Int32
type. The binding to the Text property in the first TextBlock specifies that it is binding to
the whole data source object, which is simply an integer in this case.

The binding to the Text property in the second TextBlock is where we are using our
MultiBinding and IMultiValueConverter elements. We set our
HigherLowerConverter class to the Converter property of the MultiBinding object
and inside this, we specify two Binding objects. The first is again binding to the integer
value and the second uses the RelativeSource.PreviousData property to data bind to
the previous integer value. Let's now see the output of this example:

Each value after the first have an arrow displayed underneath, that specifies whether it is
higher or lower than the previous value. While the visual output of this example could be
improved, it does still highlight the worrying trend of the weight measurements
continually increasing towards the end of the sample data. This useful technique can be
used in any situation when we need to compare current data values with previous values,
such as when displaying share prices, or stock levels.

Becoming Proficient with Data Binding Chapter 4

[152]

Dependency Properties
We've already seen some examples of Dependency Properties in previous chapters, but
now let's take a more thorough look. We have a large number of options that we can use
when declaring these properties, with some more commonly used than others. Let's
investigate the standard declaration first, by defining an Hours property of type int in a
class named DurationPicker:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours), typeof(int),
 typeof(DurationPicker));

public int Hours
{
 get { return (int)GetValue(HoursProperty); }
 set { SetValue(HoursProperty, value); }
}

As with all Dependency Properties, we start by declaring the property as static and
readonly because, we only want a single, immutable instance of it. This also enables us to
access it without an instance of our class.

Unlike normal CLR properties, we do not store the values of our Dependency Properties in
private fields that back the properties. Instead, default values are stored directly within the
metadata of each DependencyProperty object and altered values are stored in a separate
array in the DependencyObject instance that the Dependency Property value was set on.

Let's clarify this a little further and remember that all of the built-in controls extend
the DependencyObject class. This means that the altered values of the
TextProperty Dependency Property for example, which was declared in the TextBox
class, are stored in the actual TextBox instance that the property value was changed
on. This is the main reason why bindings can only be set on a Dependency Property of
a Dependency Object.

An array of values exists in each DependencyObject instance and contains the values of
all of its declared Dependency Properties that have been explicitly set on it. This is a very
important point. This means that by default, with no changed values, the array is empty
and therefore, the memory footprint is very small.

Becoming Proficient with Data Binding Chapter 4

[153]

This is converse to a CLR class, where each property has a memory footprint, whether it is
set or not. The result of this arrangement is that it saves a huge amount of memory, because
only Dependency Property values that have been explicitly set will be stored in the array of
values, while default values are read directly from the Dependency Property objects
instead.

The fact that this array of changed values exists in the DependencyObject class explains
why we need to call its GetValue and SetValue methods to access and set the values of
our Dependency Properties. Our HoursProperty here is merely the identifier, known as
the Dependency Property Identifier, whose GlobalIndex property value is used to access
the relevant value from that array.

Note that the values in this array are of type object, so that it can work with any object
type. This explains why we need to cast the return value of the GetValue method from
object to the appropriate type in the getter of our CLR wrapper property. Let's now
examine what happens internally when we declare a Dependency Property.

In the DependencyProperty class, there is a private
static Hashtable named PropertyFromName, which holds references to every registered
Dependency Property in the application and is shared among all instances of the class. To
declare each property and create our key to the Hashtable, we use the Register method
of the DependencyProperty class.

This method has a number of overloads, but all of them require the following information;
the name and type of the property and the type of the declaring class, or owner type as
Microsoft prefer to call it. Let's look into this process in a bit more depth.

When we register a Dependency Property using one of the Register methods, the
provided metadata is first validated and replaced with default values, if required. Then a
private RegisterCommon method is called and inside it, a class named FromNameKey is
used to generate the unique key from the name and owner type of the Dependency
Property to create. It does this by creating a unique hash code, by combining the results
from calling the object.GetHashCode method on both the name and owner type passed
to it.

Becoming Proficient with Data Binding Chapter 4

[154]

After the FromNameKey object has been created, the PropertyFromName collection is
checked for this key and an ArgumentException is thrown if one already exists within it.
If it is unique, then the default metadata and default value are validated and set from input
parameters, or automatically generated if missing.

After this step, the actual DependencyProperty instance is created using the new keyword
and a private constructor. This internal instance is then added to the PropertyFromName
Hashtable, using the FromNameKey object as the unique key, and then returned to the
caller of the Register method, to be stored locally in the public static readonly
Dependency Property Identifier.

Note that the overloaded Register methods both have an additional input parameter of
type PropertyMetadata and we'll investigate this in the next section. For now, let's focus
on the last overload, which also enables us to attach a ValidateValueCallback handler
to our property.

As the name suggests, this is solely used for validation purposes and we cannot alter the
data bound value in this method. Instead, we are simply required to return true or false
to specify the validity of the current value. Let's see how we can attach this handler to our
property and what its method signature is:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours), typeof(int),
 typeof(DurationPicker), new PropertyMetadata(12), ValidateHours));

private static bool ValidateHours(object value)
{
 int intValue = (int)value;
 return intValue > 0 && intValue < 25;
}

Note that the ValidateValueCallback delegate does not provide us with any reference
to our class and so, we cannot access its other properties from this static context. In order to
compare the current value with other property values, or to ensure that certain conditions
are met, we can use another overload of the PropertyMetadata input parameter of the
DependencyProperty.Register method and we'll see this shortly. But let's now return
to focus on the PropertyMetadata input parameter.

Becoming Proficient with Data Binding Chapter 4

[155]

Setting metadata
Using the overloads of the PropertyMetadata constructor, we can optionally set a default
value for the property and attach handlers to be called when the value changes, or when it
is being re-evaluated. Let's update our example to attach a PropertyChangedCallback
handler now:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours), typeof(int),
 typeof(DurationPicker), new PropertyMetadata(OnHoursChanged));

private static void OnHoursChanged(DependencyObject dependencyObject,
 DependencyPropertyChangedEventArgs e)
{
 // This is the signature of PropertyChangedCallback handlers
}

Note that our PropertyChangedCallback handler must also be declared as static in order
to be used from the static context of the declared DependencyProperty as shown in the
preceding code. However, we may have a situation where we need to call an instance
method rather than a static method and in these cases, we can declare an anonymous
method that calls our instance method like this:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours),
 typeof(int), typeof(DurationPicker),
 new PropertyMetadata((d, e) => ((DurationPicker)d).OnHoursChanged(d,e)));

private void OnHoursChanged(DependencyObject dependencyObject,
 DependencyPropertyChangedEventArgs e)
{
 // This is the signature of non-static PropertyChangedCallback handlers
}

Anonymous methods comprised of Lambda expressions can appear confusing, so let's first
extract the relevant code:

(d, e) => ((DurationPicker)d).OnHoursChanged(d, e))

This could be re-written to make the example somewhat clearer:

(DependencyObject dependencyObject, DependencyPropertyChangedEventArgs e)
 =>
 ((DurationPicker)dependencyObject).OnHoursChanged(dependencyObject, e))

Becoming Proficient with Data Binding Chapter 4

[156]

Now we can clearly see the input parameters of the PropertyChangedCallback handler,
followed by the anonymous method body. Inside this method, we simply cast the
dependencyObject input parameter to the type of the declaring class and then call the
non-static method from the cast instance of the class, passing the input parameters through,
if required.

As we saw in the Chapter 2, Debugging WPF Applications, the CLR properties that provide
convenient access to our Dependency Properties will not be called by the WPF Framework
when their values change. Using this PropertyChangedCallback handler is how we are
able to perform actions upon value changes, or to debug the changing values.

The last overload of the PropertyMetadata constructor additionally enables us to set a
CoerceValueCallback handler, which provides the platform for us to ensure that our
values remain within valid ranges. Unlike the PropertyChangedCallback delegate, it
requires us to return the output value of the property, so this enables us to alter the value
before returning it. Here is a simple example that shows how we can adjust our property
values:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours),
 typeof(int), typeof(DurationPicker),
 new PropertyMetadata(0, OnHoursChanged, CoerceHoursValue));
...
private static object CoerceHoursValue(DependencyObject dependencyObject,
 object value)
{
 // Access the instance of our class from the dependencyObject parameter
 DurationPicker durationPicker = (DurationPicker)dependencyObject;
 int minimumValue = 1, maximumValue = durationPicker.MaximumValue;
 int actualValue = (int)value;
 return Math.Min(maximumValue, Math.Max(minimumValue, actualValue));
}

In this simple example, we first cast the dependencyObject input parameter, so that we
can access its MaximumValue property. Let's assume that our DurationPicker control can
work with either twelve or twenty-four hour time formats and so we need to determine the
current upper hour limit. We can therefore constrain our Hours property value to be
between one and this upper limit.

Becoming Proficient with Data Binding Chapter 4

[157]

When using the CoerceValueCallback handler, there is a special case that enables us to
effectively cancel a change in value. If your code detects what your requirements specify to
be a wholly invalid value, then you can simply return the
DependencyProperty.UnsetValue value from the handler.

This value signals to the property system that it should discard the current change and
return the previous value instead. You could even use this technique to selectively block
changes to a property until a certain condition is met elsewhere in the class, for example.

That sums up the useful but fairly limited options that we have with our
PropertyMetadata object, although it should be noted that there are a number of classes
that derive from this class that we can use in its place and each have their own benefits. The
UIPropertyMetadata class directly extends the PropertyMetadata class and adds the
ability to disable all animations of the property value via its IsAnimationProhibited
property.

Additionally, the FrameworkPropertyMetadata class further extends the
UIPropertyMetadata class and provides us with the ability to set property inheritance,
the default Binding.Mode and Binding.UpdateSourceTrigger values of the property,
and a variety of FrameworkPropertyMetadataOptions flags that affect layout.

Let's take a look at some of the FrameworkPropertyMetadataOptions members. If we
think that most users will want to use Two-Way data binding with our property, then we
can declare it with the BindsTwoWayByDefault instance. This has the effect of switching
the Binding.Mode from the default OneWay member to the TwoWay member on all
bindings to our property:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours), typeof(int),
 typeof(DurationPicker), new FrameworkPropertyMetadata(0,
 FrameworkPropertyMetadataOptions.BindsTwoWayByDefault, OnHoursChanged,
 CoerceHoursValue));

Another commonly used flag is the Inherits instance, which specifies that the property
value can be inherited by child elements. Think of the FontSize or Foreground properties
that can be set on a Window and inherited by each control inside it.

Note that if we want to create a Dependency Property using this Inherits member, then
we should declare it as an Attached Property, as property value inheritance works better
with Attached Properties. We will find out more about this soon, in a subsequent section,
but now let's continue. Next is the SubPropertiesDoNotAffectRender member, which
can be used to streamline performance, and we'll find out more about this particular
instance in Chapter 12, Deploying Your Masterpiece Application.

Becoming Proficient with Data Binding Chapter 4

[158]

The last commonly used options are the AffectsArrange, AffectsMeasure,
AffectsParentArrange and AffectsParentMeasure members. These are typically used
with Dependency Properties that have been declared in custom panels, or other UI controls,
where the property value affects the look of the control and changes to it need to cause a
visual update.

It should also be noted that this FrameworkPropertyMetadataOptions enumeration is
declared with the FlagsAttribute attribute, which signifies that we can also allocate a
bitwise combination of its instance values, and therefore set multiple options for each of our
Dependency Properties:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours), typeof(int),
 typeof(DurationPicker), new FrameworkPropertyMetadata(0,
 FrameworkPropertyMetadataOptions.BindsTwoWayByDefault |
 FrameworkPropertyMetadataOptions.AffectsMeasure, OnHoursChanged,
 CoerceHoursValue));

In order to set the default value for the Binding.UpdateSourceTrigger property, we
need to use the most heavily populated constructor, passing all six input parameters:

public static readonly DependencyProperty HoursProperty =
 DependencyProperty.Register(nameof(Hours), typeof(int),
 typeof(DurationPicker), new FrameworkPropertyMetadata(0,
 FrameworkPropertyMetadataOptions.BindsTwoWayByDefault, OnHoursChanged,
 CoerceHoursValue, false, UpdateSourceTrigger.PropertyChanged));

Note that it is perfectly fine to pass null values for the callback handlers, if we don't need
to use them. The false after the CoerceValueCallback handler value sets the
IsAnimationProhibited property of the UIPropertyMetadata class. The
UpdateSourceTrigger value set here will be used on all bindings to this property that
have not explicitly set the UpdateSourceTrigger property on the binding, or have set the
UpdateSourceTrigger.Default member to the binding property.

Now that we have fully investigated the various options that we have when we declare
Dependency Properties using the Register method of the DependencyProperty class,
let's take a look at the another registration method from this class.

Becoming Proficient with Data Binding Chapter 4

[159]

Declaring read-only Dependency Properties
Typically, read-only Dependency Properties are most commonly found in custom controls
in situations where we need to data bind to a value, but do not want it to be publicly
accessible. It might be a property that holds some relation to an on screen visual, a mid
calculation point, or previous value, but generally, we don't want the users of our
framework to be able to data bind to it.

Let's imagine a scenario where we want to create a button that will enable us to set a tooltip
message to display when the control is disabled, in addition to the normal tooltip message.
In this case, we could declare one Dependency Property to hold the disabled tooltip
message and another to store the value of the original tooltip when displaying the disabled
tooltip. This original tooltip property is a perfect candidate to be a read-only Dependency
Property. Let's see what this property looks like:

private static readonly DependencyPropertyKey originalToolTipPropertyKey =
 DependencyProperty.RegisterReadOnly("OriginalToolTip", typeof(string),
 typeof(TooltipTextBox), new PropertyMetadata());

public static readonly DependencyProperty OriginalToolTipProperty =
 originalToolTipPropertyKey.DependencyProperty;

public static string GetOriginalToolTip(DependencyObject dependencyObject)
{
 return (string)dependencyObject.GetValue(OriginalToolTipProperty);
}

As you can see, we use a different syntax to declare read-only Dependency Properties.
Instead of returning the DependencyProperty identifier that is returned from the
Register method, the RegisterReadOnly method returns a DependencyPropertyKey
object.

This object is typically declared with a private access modifier, to stop it from being
externally used with the DependencyObject.SetValue method. However, this method
can be used within the class that registered the read-only property to set its value.

The DependencyProperty property of the DependencyPropertyKey object is used to
return the actual DependencyProperty identifier that is used to access the property value
from the dictionary that we discussed earlier.

Becoming Proficient with Data Binding Chapter 4

[160]

The input parameters of the RegisterReadOnly methods offer the same options as those
of the standard Register method, although there is one less overload. Unlike the
Register method, when calling the RegisterReadOnly methods, we always need to
provide the PropertyMetadata object, although we can pass a null value if we do not
need what it provides.

One very important point to note is that when data binding to a read-only Dependency
Property, we must set the binding Mode property to the OneWay enumeration member.
Failure to do so will result in an error at runtime. We've now covered the creation of normal
Dependency Properties in some detail, so let's move on to take a look at a different kind
Dependency Property.

Registering Attached Properties
The DependencyProperty class enables us to register one further, special type of
Dependency Property. These properties are like the Extension Methods of XAML, as they
enable us to extend existing classes with our own functionality. They are of course,
Attached Properties.

We've already seen some examples of them earlier in this book and we'll see further
examples later, but in this chapter, we'll cover their registration. We can declare Attached
Properties in exactly the same ways that we can create Dependency Properties and have all
of the same various options of setting metadata and attaching handlers.

There are several overloads of the RegisterAttached and RegisterAttachedReadOnly
methods that mirror the Register and RegisterReadOnly methods in input parameters
and functionality. However, instead of declaring a CLR wrapper for our Attached
Properties, we are required to declare a pair of getter and setter methods to access and set
their values. Let's see another example from the TextBoxProperties class:

public static DependencyProperty IsFocusedProperty =
 DependencyProperty.RegisterAttached("IsFocused",
 typeof(bool), typeof(TextBoxProperties),
 new PropertyMetadata(false, OnIsFocusedChanged));

public static bool GetIsFocused(DependencyObject dependencyObject)
{
 return (bool)dependencyObject.GetValue(IsFocusedProperty);
}

public static void SetIsFocused(DependencyObject dependencyObject,
 bool value)
{

Becoming Proficient with Data Binding Chapter 4

[161]

 dependencyObject.SetValue(IsFocusedProperty, value);
}

public static void OnIsFocusedChanged(DependencyObject dependencyObject,
 DependencyPropertyChangedEventArgs e)
{
 TextBox textBox = dependencyObject as TextBox;
 if ((bool)e.NewValue && !(bool)e.OldValue && !textBox.IsFocused)
 textBox.Focus();
}

Here, we have the declaration of a bool Attached Property named IsFocused with a
PropertyMetadata element that specifies a default value and a
PropertyChangedCallback handler. Like the CLR property wrappers for Dependency
Properties, these getter and setter methods will not be called by the WPF Framework. They
are typically declared both public and static.

However, there is one situation where we do not need to declare these methods as public. If
we want to create a Dependency Property whose value can be inherited by its children,
then we should declare it using the RegisterAttached method, even if we don't require
an Attached Property. In this situation, we are not required to publicly expose our property
getter and setter.

Although we can specify the FrameworkPropertyMetadataOptions.Inherits
metadata option upon the declaration of Dependency Properties and their value inheritance
might work in some situations, it is not guaranteed in other situations. As Attached
Properties are global properties in the property system, we can be assured that their
property value inheritance will work in all situations.

Returning to our example, our PropertyChangedCallback handler is a simple affair. It
casts the dependencyObject property to the type of control that the property is attached
to, in this case, a TextBox. It then verifies that the data bound bool value has been set from
false to true and that the control is not already focused. If these conditions are verified,
the control is then focused.

This Attached Property can be data bound to a bool property in a View Model like this:

xmlns:Attached="clr-namespace:CompanyName.ApplicationName.Views.Attached"
...
<TextBox Attached:TextBoxProperties.IsFocused="{Binding IsFocused}"
 Text="{Binding User.Name}" />

Becoming Proficient with Data Binding Chapter 4

[162]

The attached TextBox control can then be focused from the View Model at any time using
this following method:

private void Focus()
{
 IsFocused = false;
 IsFocused = true;
}

Note that we need to ensure that the variable is false before setting it to true, as it is the
actual changing of the value that will trigger the control to become focused. Now that we
know how to declare our own custom Dependency Properties, let's turn our attention to the
rules that govern the way they are set.

Prioritizing value setting sources
As we have already seen, there are a number of ways of setting the values of Dependency
Properties; we can set them directly in code, locally in XAML, or through the use of our
CoerceValueCallback handlers for example. However, there are many more ways that
they can be set. For example, they can also be set in styles, animations, or through property
inheritance to name but a few.

When we data bind our View Model properties to Dependency Properties and find that the
displayed value is not what we are expecting, one reason for this can be because another
method of setting the property has a higher precedence and so, overrides our expected
value. This is because all the methods of setting the values of Dependency Properties are
ordered in terms of importance in a list called the Dependency Property Setting Precedence
List. Let's take a look at that now:

Property system coercion1.
Animated properties2.
Local value3.
Template properties4.
Implicit style (only applies to the Style property)5.
Style triggers6.
Template triggers7.
Style setters8.
Default (theme) style9.
Inheritance10.
Default value from Dependency Property metadata11.

Becoming Proficient with Data Binding Chapter 4

[163]

Last on the list, with the lowest precedence at position eleven, are the default values that
are specified in the Dependency Property declarations. Next up the list are changes caused
by property inheritance. Remember that this can be defined in our Dependency Properties
using the Inherits instance of the FrameworkPropertyMetadataOptions enumeration
in the FrameworkPropertyMetadata input parameter of the
DependencyProperty.Register method. Let's see an example of this to highlight this
order of precedence:

<StackPanel TextElement.FontSize="20">
 <TextBlock Text="Black Text" />
 <StackPanel Orientation="Horizontal" TextElement.Foreground="Red">
 <TextBlock Text="Red Text" />
 </StackPanel>
</StackPanel>

In this first example, the TextBlock control in the outer StackPanel has its Foreground
color set to black by the default value that was set in the data bound Text property.
However, the TextBlock control inside the inner StackPanel has its default Foreground
property value overridden by the TextElement.Foreground Attached Property value
that is set on its parent control. It inherits the value of this property from the
StackPanel and this demonstrates that properties set through property inheritance have a
higher precedence than properties set with default values.

However, default property values that are set in theme styles follow on the precedence list,
with the next lowest priority, and override property values set through inheritance. As it is
quite difficult to come up with a short XAML example for this, we'll skip over this item and
move onto the next. At number eight on the list, we have property values that have been set
by style setters. Let's adjust our earlier example to demonstrate this:

<StackPanel TextElement.FontSize="20">
 <TextBlock Text="Black Text" />
 <StackPanel Orientation="Horizontal" TextElement.Foreground="Red">
 <TextBlock Text="Red Text" Margin="0,0,10,0" />
 <TextBlock Text="Green Text">
 <TextBlock.Style>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="Foreground" Value="Green" />
 </Style>
 </TextBlock.Style>
 </TextBlock>
 </StackPanel>
</StackPanel>

Becoming Proficient with Data Binding Chapter 4

[164]

In this example, the TextBlock control in the outer StackPanel still has its Foreground
color set to black by the default value of the data bound Text property. The top TextBlock
control inside the inner StackPanel still has its default Foreground property value
overridden by the TextElement.Foreground value from its parent control. However,
now we can also see that values that are set in a Style will override inherited property
values. This is the output of this code snippet:

Next, at number seven on the precedence list, we have template triggers, which override
property values that are set with style setters and all other previously mentioned methods
of setting values. Note that this specifically deals with triggers that are declared within
templates, such as the ControlTemplate, and does not relate to triggers that are declared
within any Style.Triggers collections. Let's look at an example:

<Button Content="Blue Text" FontSize="20">
 <Button.Style>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Green" />
 <Setter Property="Control.Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <ContentPresenter />
 <ControlTemplate.Triggers>
 <Trigger Property="IsEnabled" Value="True">
 <Setter Property="Foreground" Value="Blue" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Button.Style>
</Button>

Becoming Proficient with Data Binding Chapter 4

[165]

In this example, we have declared a button and overridden its ControlTemplate, defining
a new, minimal markup for it. In the style, we have set the Foreground property value to
green in a setter. However, in our ControlTemplate, we have a Trigger that will
override this value and set it to blue when its condition is met. Note that if we changed the
trigger condition to false or removed the whole trigger, the button text would then
become green, as set by the style.

Next up the list at position six are triggers that are declared within Style.Triggers
collections. One important point to note here is that this only relates to styles that are either
declared inline locally, in the current control's Resources section, or in the application
resources file and not to default styles, which have a lower precedence value. We can
extend our previous example by adding a new trigger into the Style.Triggers collection
to highlight this new priority:

<Button Content="Orange Text" FontSize="20">
 <Button.Style>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Green" />
 <Setter Property="Control.Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <ContentPresenter />
 <ControlTemplate.Triggers>
 <Trigger Property="IsEnabled" Value="True">
 <Setter Property="Foreground" Value="Blue" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Style.Triggers>
 <Trigger Property="IsEnabled" Value="True">
 <Setter Property="Foreground" Value="Orange" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </Button.Style>
</Button>

When running this example, our text is now orange. The Foreground property value that
is set by the trigger in the Triggers collection of the style has overridden the value set by
the template trigger, which itself has overridden the value set by the style setter. Let's move
on.

Becoming Proficient with Data Binding Chapter 4

[166]

At number five on the list, we have implicit styles. Note that this special level of precedence
only applies to the Style property and no others. A style can be implicitly set to all
members of a type by specifying the target type and being declared without an x:Key
directive set. Here is an example:

<Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Green" />
</Style>

The relevant style must either be declared in the current XAML page, or the
Application.Resources section of the App.xaml file. Styles from themes are not
included here, as they have a lower value precedence. Note that this special position in the
list was only added in .NET 4 and is omitted from the .NET 3 documentation on the
docs.microsoft.com website.

Next up the list at position four are properties that are set within either a
ControlTemplate or a DataTemplate. If we set a property directly on any element within
a template, that value will override all values set by methods with lower precedence. For
example, if we directly set the Foreground property on the ContentPresenter from our
previous example, then its value will override all other settings in that example and the
button text will be red:

<ControlTemplate TargetType="{x:Type Button}">
 <ContentPresenter TextElement.Foreground="Red" />
 <ControlTemplate.Triggers>
 <Trigger Property="IsEnabled" Value="True">
 <Setter Property="Foreground" Value="Blue" />
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

At position three on the list, we have locally set values. To demonstrate this, we could just
set the Foreground property on the actual button from the last full example, but instead
let's highlight an extremely common mistake that a lot of developers make. Imagine a
situation where we want to output a value predominantly in one color, but in another color
under certain circumstances. Some developers might try something like this:

<TextBlock Text="{Binding Account.Amount, StringFormat={}{0:C}}"
 Foreground="Green">
 <TextBlock.Style>
 <Style TargetType="{x:Type TextBlock}">
 <Style.Triggers>
 <DataTrigger Binding="{Binding Account.IsOverdrawn}" Value="True">
 <Setter Property="Foreground" Value="Red" />
 </DataTrigger>

http://docs.microsoft.com

Becoming Proficient with Data Binding Chapter 4

[167]

 </Style.Triggers>
 </Style>
 </TextBlock.Style>
</TextBlock>

Upon running this example, some might expect this to work and be stumped when it
doesn't. The reason why this doesn't work is because local property settings have a higher
value setting precedence than properties set by style triggers. The solution to correcting this
mistake is to use our new found knowledge of this value setting precedence list and move
the local property setting to a style setter, which has a lower precedence than the trigger:

<TextBlock Text="{Binding Account.Amount, StringFormat={}{0:C}}">
 <TextBlock.Style>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="Foreground" Value="Green" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding Account.IsOverdrawn}" Value="True">
 <Setter Property="Foreground" Value="Red" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </TextBlock.Style>
</TextBlock>

Now, the TextBlock.Foreground property will be set to green from the style setter and
overridden by the trigger when the condition is true, as expected. Let's continue up the list
to position two. In the penultimate position, we have property values that are set by
animations. A very simple example can demonstrate this nicely for us:

<Rectangle Width="300" Height="300" Fill="Orange">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard Storyboard.TargetProperty="Width">
 <DoubleAnimation Duration="0:0:1" To="50" AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
</Rectangle>

Becoming Proficient with Data Binding Chapter 4

[168]

In this example, the animation overrides the locally set value of the Width property and the
rectangle grows and shrinks as planned. If we think logically about this, then it is clear that
the animation system had to feature at a very high position on the property setting
precedence list. Otherwise, if it was much lower down the list, we wouldn't be able to
animate anything.

However, properties that are set by animations are at number two of the list, which means
that there is one place that a property can be set that will override even values set by
animations. At number one on the list of Dependency Property Setting Precedence, with the
absolutely highest priority setting, is the property coercion system that we discussed in the
Dependency Properties section.

This could only really happen if we built a custom control that animated a custom
Dependency Property that had particular requirements placed upon it, such as specifying
that it should have a certain maximum or minimum value. In this case, we could enforce
these rules in a CoerceValueCallback handler that is attached to the Dependency
Property.

If we had these requirements that were enforced by the property coercion system, yet
wanted to animate them in the UI, it again makes perfect sense that we would want our
coerced values to override the values set by the animation. In this way, we could rest
assured that our coerced property values will remain within the bounds that we set for
them at all times.

Data templates
We've already seen a number of simple examples of the DataTemplate, but they are such
an important part of WPF that we're going to have a much more thorough look at them
now. In short, we use a DataTemplate to define how we want particular data objects to be
rendered in the UI.

If we were to data bind a particular type of object to a UI control without providing a
DataTemplate for it, the WPF Framework would not know how to display it. Let's
highlight this with an example:

<ItemsControl ItemsSource="{Binding Users}" />

Becoming Proficient with Data Binding Chapter 4

[169]

In these cases, the best job that the WPF Framework can do is to display a string
representation of each object. It achieves this by calling the object.ToString method on
the data object and setting that value to the Text property of a TextBlock, which it uses to
display the object. If this method has not been overridden in the object's class, this will
result in the name of the type of the object being displayed in its place:

Knowing that the WPF Framework will call the ToString method on our data objects
before displaying them enables us to take a shortcut, or a simple alternative to defining a
DataTemplate, if we only need a textual output in the UI. Therefore, it is always a good
idea for us to override the object.ToString method to output some meaningful display:

public override string ToString()
{
 return Name;
}

This will result in the following output:

Note that Visual Studio IntelliSense also calls the ToString method on our data objects
before displaying them, so the benefit of providing a custom implementation for it is
doubled. As such, we often add an abstract method into our base class to ensure that all
derived classes will implement this method:

namespace CompanyName.ApplicationName.DataModels
{
 public abstract class BaseDataModel : INotifyPropertyChanged
 {

Becoming Proficient with Data Binding Chapter 4

[170]

 ...

 public abstract override string ToString();
 }
}

Returning to the topic of data templates now, let's first take a look at a better example for
our User objects and then investigate where we can declare our data templates:

<DataTemplate x:Key="UserTemplate" DataType="{x:Type DataModels:User}">
 <Border BorderBrush="Black" BorderThickness="1" CornerRadius="5"
 Padding="5" Margin="0,0,0,5">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Name}" Margin="0,0,3,0" />
 <TextBlock Text="{Binding Age, StringFormat={}({0})}" />
 </StackPanel>
 </Border>
</DataTemplate>

In this example, we simply output the user's name in one TextBlock and their age in
another. Note the use of the StringFormat property to surround the age in brackets in the
output. Let's now see how this DataTemplate renders our User objects:

Primarily, we can declare our data templates in one of four main places. The first is in line
with the control that the related data object or objects will be displayed in. We have two
main options for this too, depending on the number of data objects that we have to display.

If we have a single object to display, we can utilize the ContentControl element to
display it and the ContentControl.ContentTemplate property to define the
DataTemplate element that it should use to render the data object:

<ContentControl Content="{Binding Users[0]}">
 <ContentControl.ContentTemplate>
 <DataTemplate DataType="{x:Type DataModels:User}">

Becoming Proficient with Data Binding Chapter 4

[171]

 ...
 </DataTemplate>
 </ContentControl.ContentTemplate>
</ContentControl>

Similarly, in a collection control, or ItemsControl, such as the ListBox control, we can
declare our DataTemplate directly in the ItemTemplate property:

<ListBox ItemsSource="{Binding Users}">
 <ListBox.ItemTemplate>
 <DataTemplate DataType="{x:Type DataModels:User}">
 ...
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

The next place that we can declare our data templates is in the Resources section of the
control that will display the data object or objects. Here is our ContentControl now:

<ContentControl Content="{Binding Users[0]}"
 ContentTemplate="{StaticResource UserTemplate}">
 <ContentControl.Resources>
 <DataTemplate x:Key="UserTemplate" DataType="{x:Type DataModels:User}">
 ...
 </DataTemplate>
 </ContentControl.Resources>
</ContentControl>

We can also declare our data templates in the Resources section of the Window or
UserControl that contains the control that displays the data objects. If we have multiple
data objects, then we can set our data template like this:

<UserControl.Resources>
 <DataTemplate x:Key="UserTemplate" DataType="{x:Type DataModels:User}">
 ...
 </DataTemplate>
</UserControl.Resources>
<ListBox ItemsSource="{Binding Users}"
 ItemTemplate="{StaticResource UserTemplate}" />

The last place that we can define our data templates is in the Application.Resources
section of the App.xaml file. When the WPF framework searches for a data template for
particular data type, it first searches the local Resources section of the control that is
applying the template.

Becoming Proficient with Data Binding Chapter 4

[172]

If it finds no match for the type, it then searches the Resources collection of the parent
control and then the parent of that control and so on. If it still does not find a data template
with a matching type, then it will search through the Application.Resources section of
the App.xaml page.

We can use this order of lookup to our advantage. We often declare our default data
templates in the Application.Resources section of the App.xaml page, as these
resources are available application wide. If we need to override our default data templates,
to display a particular output in a particular View, we can declare a new data template with
the same x:Key directive locally in the View's Resources section.

As the local Resources section is searched before the application resources, it will use the
locally declared data template instead of the default one. Another way of overriding our
default templates is to declare them without setting their x:Key directives:

<DataTemplate DataType="{x:Type DataModels:User}">
 ...
</DataTemplate>

Resources that are declared in this way are implicitly applied to all data objects of the
appropriate type that do not have a data template explicitly applied. Therefore, in order to
override these default data templates, we can simply declare a new data template and
explicitly set it to the relative template property using its x:Key directive. Let's now look at
one further way of specifying a data template.

Taking complete control
At times, we might want to display different objects of the same type in different ways,
depending on the values of their properties. For example, with a collection of objects that
represent vehicles, you might want to have different displays for different types of vehicle,
as trucks have different specifications to motor boats. The DataTemplateSelector class
enables us to do just that.

When extending the DataTemplateSelector class, we can override its single
SelectTemplate method. In this method, we are provided with both the data object and
the data bound object and can select different data templates to return, dependent on the
data object's property values.

Becoming Proficient with Data Binding Chapter 4

[173]

Let's see a very simple example, where we return one of two data templates based on the
User's age. We'll first need to declare another DataTemplate for our User type:

<DataTemplate x:Key="InverseUserTemplate"
 DataType="{x:Type DataModels:User}">
 <Border BorderBrush="White" BorderThickness="1" Background="Black"
 TextElement.Foreground="White" CornerRadius="5" Padding="8,3,5,5"
 Margin="0,0,0,5">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Name}" Margin="0,0,3,0" />
 <TextBlock Text="{Binding Age, StringFormat={}({0})}" />
 </StackPanel>
 </Border>
</DataTemplate>

In this template, we have simply inverted the colors of the background and foreground
from those in the first template. Let's now see our DataTemplateSelector class that will
reference both this and the other DataTemplate element:

using System.Windows;
using System.Windows.Controls;
using CompanyName.ApplicationName.DataModels;

namespace CompanyName.ApplicationName.Views.DataTemplateSelectors
{
 public class UserAgeDataTemplateSelector : DataTemplateSelector
 {
 public override DataTemplate SelectTemplate(object item,
 DependencyObject container)
 {
 FrameworkElement element = container as FrameworkElement;
 if (element != null && item != null && item is User user)
 {
 if (user.Age < 35) return
 (DataTemplate)element.FindResource("InverseUserTemplate");
 else return (DataTemplate)element.FindResource("UserTemplate");
 }
 return null;
 }
 }
}

Becoming Proficient with Data Binding Chapter 4

[174]

In this example, we first defensively cast the container input parameter to an object of
type FrameworkElement, using the as keyword. We then perform the standard null
checks for this new object and the other input parameter and use the is keyword to pattern
match the correct type and automatically cast the item parameter to a User object, if it's of
the right type. If it is, then we call the FindResource method on our FrameworkElement
object, to return the appropriate data template, dependent upon the value of the Age
property. Otherwise, we return null.

The FrameworkElement.FindResource method first searches the calling object for the
data template and then its parent element, and so on, up the logical tree. If it doesn't find it
in any parent element in the application window, it then looks through the App.xaml file.
If it still does not find it there, it then searches in the themes and system resources.

The container input parameter is used to access the FindResource method. Note that it
will typically be of type ContentPresenter if we're using a normal collection control, so
we could have cast it to that type in order to access the data templates.

However, the default container could be overridden to use one of the parent classes that the
ContentPresenter class is derived from. Therefore, to avoid the possibility of exceptions,
it is safer to cast it to the FrameworkElement class that actually declares the
FindResource method.

Let's see how we can use this class now. First, we need to add the XAML namespace prefix
for our DataTemplateSelectors namespace:

xmlns:DataTemplateSelectors=
 "clr-namespace:CompanyName.ApplicationName.Views.DataTemplateSelectors"

Then we need to add an instance of our UserAgeDataTemplateSelector class to a
Resources section:

<DataTemplateSelectors:UserAgeDataTemplateSelector
 x:Key="UserAgeDataTemplateSelector" />

Finally, we set our resource selector to the ItemTemplateSelector property:

<ItemsControl ItemsSource="{Binding Users}" Padding="10"
 ItemTemplateSelector="{StaticResource UserAgeDataTemplateSelector}" />

Becoming Proficient with Data Binding Chapter 4

[175]

When running the application now, we'll see this new output:

Note that DataTemplateSelector classes are typically used with very different templates,
such as those that make up the different editing or viewing modes of a custom control.
Slight differences like those in our simple example can be far easier achieved using style
triggers and we'll find out more about triggers and styles in the next chapter.

Displaying hierarchical data
There is one class in the .NET Framework that extends the DataTemplate class in order to
support UI controls that extend the HeaderedItemsControl class. As it sounds, the
HeaderedItemsControl class represents a particular kind of ItemsControl element that
has a header. Examples include the MenuItem, TreeViewItem, and ToolBar classes.

The HierarchicalDataTemplate class was created to display hierarchical Data Models.
To clarify a little further, a hierarchical data Model is a data Model that contains a collection
property with items of the same type as the parent object. Think of the folder view in the
Windows Explorer window; each folder can contain further folders.

The main difference between the HierarchicalDataTemplate and the DataTemplate
class is that the HierarchicalDataTemplate class has an ItemsSource property that we
can use to bind the children of each item to.

In addition to the ItemsSource property, there are a number of other item-related
properties, such as the ItemContainerStyle, ItemStringFormat and ItemTemplate
properties. We'll find out more about what these other properties do in the next chapter,
but for now, let's look at an example.

Becoming Proficient with Data Binding Chapter 4

[176]

There are plenty of HierarchicalDataTemplate examples that demonstrate the use of
TreeViewItem elements to be found online, so for this example, we'll see how we can
build an application menu using data binding. First, we'll need a View Model to data bind
to each MenuItem control. Let's take a look at our MenuItemViewModel class:

using System.Collections.ObjectModel;
using System.Windows.Input;

namespace CompanyName.ApplicationName.ViewModels
{
 public class MenuItemViewModel : BaseViewModel
 {
 private string header = string.Empty;
 private ICommand command = null;
 private ObservableCollection<MenuItemViewModel> menuItems =
 new ObservableCollection<MenuItemViewModel>();

 public string Header
 {
 get { return header; }
 set { if (header != value) { header = value;
 NotifyPropertyChanged(); } }
 }

 public ICommand Command
 {
 get { return command; }
 set { if (command != value) { command = value;
 NotifyPropertyChanged(); } }
 }

 public ObservableCollection<MenuItemViewModel> MenuItems
 {
 get { return menuItems; }
 set { if (menuItems != value) { menuItems = value;
 NotifyPropertyChanged(); } }
 }
 }
}

Becoming Proficient with Data Binding Chapter 4

[177]

In this simplified example, our View Model only declares three properties to data bind to
the MenuItem control's properties. In a real application, we would typically add further
properties, so that we could define the icon, or maybe the style of each menu item as well.
However, continuing the example with our View Model, let's look at the class that would
declare these View Models.

If an application has a menu control, it would typically reside in the MainWindow.xaml
file. Therefore, the data bound MenuItemViewModel elements would be declared in the
View Model that is data bound to the data context of that View. Let's look at the required
properties:

private ObservableCollection<MenuItemViewModel> menuItems =
 new ObservableCollection<MenuItemViewModel>();

public ObservableCollection<MenuItemViewModel> MenuItems
{
 get { return menuItems; }
 set { if (menuItems != value) { menuItems = value;
 NotifyPropertyChanged(); } }
}

An alternative to programmatically declaring the various menu item View Models would
be to define the items in an XML file, read it in and generate the items from that at runtime.
However, for the purpose of this simple example, let's just hard code some values to use,
omitting the commands for brevity:

MenuItems.Add(new MenuItemViewModel() { Header = "Users",
 MenuItems = new ObservableCollection<MenuItemViewModel>() {
 new MenuItemViewModel() { Header = "Details",
 MenuItems = new ObservableCollection<MenuItemViewModel>() {
 new MenuItemViewModel() { Header = "Banking" },
 new MenuItemViewModel() { Header = "Personal" } } },
 new MenuItemViewModel() { Header = "Security" } } });
MenuItems.Add(new MenuItemViewModel() { Header = "Administration" });
MenuItems.Add(new MenuItemViewModel() { Header = "View" });
MenuItems.Add(new MenuItemViewModel() { Header = "Help",
 MenuItems = new ObservableCollection<MenuItemViewModel>() {
 new MenuItemViewModel() { Header = "About" } } });

While this code is somewhat difficult to read, it is far more compact than declaring each
child item separately and then building up the hierarchy afterwards. The end result is the
same, so let's now see what the required XAML looks like:

<Menu ItemsSource="{Binding MenuItems}" FontSize="14" Background="White">
 <Menu.ItemContainerStyle>
 <Style TargetType="{x:Type MenuItem}">

Becoming Proficient with Data Binding Chapter 4

[178]

 <Setter Property="Command" Value="{Binding Command}" />
 </Style>
 </Menu.ItemContainerStyle>
 <Menu.ItemTemplate>
 <HierarchicalDataTemplate
 DataType="{x:Type ViewModels:MenuItemViewModel}"
 ItemsSource="{Binding MenuItems}">
 <TextBlock Text="{Binding Header}" />
 </HierarchicalDataTemplate>
 </Menu.ItemTemplate>
</Menu>

Here, we declare a Menu control and data bind our MenuItems collection to its
ItemsSource property. The ItemContainerStyle enables us to define the style of the UI
container that surrounds each of our data items. In this case, that control is a MenuItem
control.

All we need to do in this style is to bind the Command property of our View Model to the
Command property of the menu item. If we had declared any other properties in our View
Model to map to the MenuItem class properties, then this style would be the place to data
bind them.

As discussed earlier, the ItemTemplate property enables us to provide a data template, or
in this case, our HierarchicalDataTemplate element, that will define how each item will
be rendered. In the template declaration, we state the type of our data items and specify the
collection property that contains the child items.

Inside the template, we simply output the value of the Header property in a TextBlock
element. This will represent the name of each menu item. Let's see what this will all look
like when the application is running now:

Becoming Proficient with Data Binding Chapter 4

[179]

Data binding to enumeration collections
We've already seen a number of examples of data binding to enumeration instances. We've
seen converters that we can use to convert our enumeration values and Extension Methods
that we can use to extract additional information from each member. Earlier in this chapter,
we even saw a full but basic example using our BitRate enumeration. Now, with our new
found knowledge, let's see how we can improve that earlier example.

As noted, in the previous example, we manually declared a RadioButton control for each
of our enumerations. While that is fine for our three member enumeration, it wouldn't
make so much sense to use this method if we had a large number of members. Instead, let's
think about how we could use a DataTemplate to declare how each member should be
rendered. Let's remind ourselves how we declared each RadioButton in the previous
example:

<RadioButton Content="16 bits" IsChecked="{Binding BitRate,
 Converter={StaticResource EnumToBoolConverter},
 ConverterParameter=Sixteen}" VerticalContentAlignment="Center" />

The first thing that we notice is the hardcoded Content value. Obviously, we can't do this
in a DataTemplate, otherwise every member would be given the same label. This is a
perfect place for us to use the EnumToDescriptionStringConverter converter that we
created earlier, so let's update that now:

<UserControl.Resources>
 ...
 <Converters:EnumToDescriptionStringConverter
 x:Key="EnumToDescriptionStringConverter" />
 ...
</UserControl.Resources>
...
<RadioButton Content="{Binding .,
 Converter={StaticResource EnumToDescriptionStringConverter}}"
 IsChecked="{Binding BitRate,
 Converter={StaticResource EnumToBoolConverter},
 ConverterParameter=Sixteen}" VerticalContentAlignment="Center" />

Becoming Proficient with Data Binding Chapter 4

[180]

Next, we see that we have also hardcoded the Sixteen enumeration member to the
ConverterParameter property, so we'll need to change that in our data template too. Our
first attempt might be to simply data bind the whole data context from the data template,
which in our case, is one of the enumeration instances:

<RadioButton Content="{Binding .,
 Converter={StaticResource EnumToDescriptionStringConverter}}"
 IsChecked="{Binding BitRate,
 Converter={StaticResource EnumToBoolConverter},
 ConverterParameter={Binding}}" VerticalContentAlignment="Center" />

However, if we do this and run the application, we will receive the following exception:

A 'Binding' cannot be set on the 'ConverterParameter' property of type
'Binding'. A 'Binding' can only be set on a DependencyProperty of a
DependencyObject.

Unfortunately, we cannot data bind to the ConverterParameter property, as it was not
declared as a Dependency Property. As we cannot data bind to this property from within
our data template and no longer use the EnumToBoolConverter class to specify the
selected enumeration instance, this will complicate our example somewhat.

One trick that we can use is to utilize the SelectedItem property of the
ListBoxItem class to hold the value of our selected enumeration member instead. We can
achieve this by data binding this property to the IsChecked property of each
RadioButton using a RelativeSource.FindAncestor binding in our DataTemplate:

<RadioButton Content="{Binding .,
 Converter={StaticResource EnumToDescriptionStringConverter}}"
 IsChecked="{Binding IsSelected,
 RelativeSource={RelativeSource AncestorType={x:Type ListBoxItem}},
 FallbackValue=False}" VerticalContentAlignment="Center" />

Note that each data item in a collection control will be implicitly wrapped in a UI container
element. In our case, we'll use a ListBox control and so our enumeration instances will be
wrapped in ListBoxItem elements, but if we had chosen a ComboBox for example, then
our items' containers would be ComboBoxItem elements. We'll find out more about this in
the next chapter, but for now, let's continue looking at this example.

So, now we have data bound the Content property of the RadioButton to the description
of each member from the DescriptionAttribute attribute declared in the enumeration
and the IsChecked property to the IsSelected property of the ListBoxItem element.
However, we have lost the connection to our selected enumeration property from the View
Model.

Becoming Proficient with Data Binding Chapter 4

[181]

In order to restore this connection, we can data bind the BitRate property to the
SelectedItem property of the ListBox control. The WPF Framework implicitly connects
this property with the IsSelected property of each ListBoxItem element and so our
connection between the BitRate property and the IsChecked property of each button is
now restored. Let's see the updated XAML:

<UserControl x:Class="CompanyName.ApplicationName.Views.BitRateView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters"
 xmlns:Enums="clr-namespace:CompanyName.ApplicationName.DataModels.Enums;
 assembly=CompanyName.ApplicationName.DataModels">
 <UserControl.Resources>
 <Converters:EnumToBoolConverter x:Key="EnumToBoolConverter" />
 </UserControl.Resources>
 <GroupBox Header="Audio Quality" FontSize="14" Margin="20"
 HorizontalAlignment="Left" VerticalAlignment="Top" Padding="5">
 <ListBox ItemsSource="{Binding BitRates}"
 SelectedItem="{Binding BitRate}">
 <ListBox.ItemTemplate>
 <DataTemplate DataType="{x:Type Enums:BitRate}">
 <RadioButton Content="{Binding ., Converter={StaticResource
 EnumToDescriptionStringConverter}}"
 IsChecked="{Binding IsSelected,
 RelativeSource={RelativeSource
 AncestorType={x:Type ListBoxItem}}, FallbackValue=False}"
 VerticalContentAlignment="Center" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </GroupBox>
</UserControl>

To update our earlier example, we need to add the new Enums XAML namespace prefix, so
that we can specify our BitRate enumeration type in the data template. Next, we need to
update the content of our GroupBox element. Now we're using a ListBox control so that
we can take advantage of its item selection capabilities.

Becoming Proficient with Data Binding Chapter 4

[182]

We data bind our BitRates collection to the ItemsSource property and our selected
BitRate property to the SelectedItem property of the ListBox. The one problem with
this method is that as we're now using a ListBox element in our example, we can see it
and its contained ListBoxItem objects. This is not how radio buttons are typically
displayed:

It's not a terrible problem and it can be easily fixed by declaring a few styles. We'll return to
this example in the following chapter and demonstrate how we can style the
ListBox element and its items to completely hide their use from the end users.

Summary
We've covered a lot of important information in this chapter, from examining the binding
path syntax mini-language to exploring a number of different binding scenarios. We've
investigated the plethora of options that we're afforded when declaring our own
Dependency Properties and looked into the creation of Attached Properties, using some
interesting examples. Finally, we examined the finer details of data templating and
explored a number of ways of data binding to enumerations.

In the next chapter, we'll have an in-depth look at the various UI elements in the WPF
Framework and their most relevant properties. We'll investigate when to customize them
and when we need to create our own controls. We'll then explore the various ways of
modifying existing controls in WPF and finally, take a detailed look at how to create our
own custom controls.

5
Using the Right Controls for the

Job
In this chapter, we'll first consider the existing controls that Windows Presentation
Foundation (WPF) offers us and look at how we can use them to create the layouts that we
require. We'll investigate the many ways that we can modify these controls to avoid the
need to create new controls.

We'll examine the various levels of functionality that are built into the existing controls and
then discover how to best declare our own controls when required. We'll take an in-depth
look at the various options that we have and determine when it's best to use each one. Let's
jump straight in and take a look at the various layout controls.

Investigating the built-in controls
There is a wide range of controls included in .NET Framework. They cover most common
scenarios and it is rare that we will need to create our own controls in a typical form-based
application. All of the UI controls tend to have their functionality built up from a large
number of common base classes.

All controls will share the same core-level base classes that provide the core-level
functionalities and then a number of derived framework-level classes that provide the
functionality that is associated with the WPF Framework, such as data binding, styling, and
templating. Let's take a look at an example.

Using the Right Controls for the Job Chapter 5

[184]

Inheriting framework abilities
As with the base classes in our application framework, the built-in WPF controls also have
an inheritance hierarchy, with each successive base class offering some additional
functionality. Let's look at the Button class as an example. Here is the inheritance hierarchy
of the Button control:

System.Object
 System.Windows.Threading.DispatcherObject
 System.Windows.DependencyObject
 System.Windows.Media.Visual
 System.Windows.UIElement
 System.Windows.FrameworkElement
 System.Windows.Controls.Control
 System.Windows.Controls.ContentControl
 System.Windows.Controls.Primitives.ButtonBase
 System.Windows.Controls.Button

As with every object in .NET Framework, we start with the Object class, which provides
low-level services to all classes. These include object comparison, finalization, and the
ability to output a customizable string representation of each object.

Next is the DispatcherObject class, which provides each object with thread affinity and
associates them with a Dispatcher object. The Dispatcher class manages a prioritized
queue of work items for individual threads. Only the thread that the associated
Dispatcher object was created on can access each DispatcherObject directly and this
enables derived classes to enforce thread safety.

After the DispatcherObject class, we have the DependencyObject class, which enables
all derived classes to use the WPF property system and declare Dependency Properties. The
GetValue and SetValue methods that we call to access and set their values are also
provided by the DependencyObject class.

Next up is the Visual class, which has the primary role of providing rendering support.
All elements that are displayed in the UI will extend the Visual class. In addition to
rendering each object, it also calculates their bounding box and provides support for hit
testing, clipping, and transformations.

Extending the Visual class is the UIElement class, which provides a number of core
services to all of its derived classes. These include the event and user input systems and the
ability to determine the element's layout appearance and rendering behavior.

Using the Right Controls for the Job Chapter 5

[185]

Following on from that is the FrameworkElement class, which provides the first
framework-level members, building upon the foundation of the core-level classes that it
extends. It is the FrameworkElement class that enables data binding through the
DataContext property and styling through the Style property.

It also provides events that relate to an object's lifetime, an upgrade of the core-level layout
system to a full layout system and improved support for animations, among other things.
This is typically the lowest-level class that we might want to extend if we were creating our
own basic elements, as it enables derived classes to partake in the majority of the WPF UI
capabilities.

The Control class extends the FrameworkElement class and is the base class for most of
the WPF UI elements. It provides appearance templating through the use of its
ControlTemplate functionality and a host of appearance-related properties. These include
coloring properties, such as Background, Foreground, and BorderBrush, along with
alignment and typeface properties.

Extending the Control class is the ContentControl class, which enables controls to have
one object of any CLR type as its content. This means that we can either set data objects or
UI elements as the content, although we may need to provide a DataTemplate for the data
objects if they are of a custom type.

The final class in the long line of parent classes that the Button class extends is the
ButtonBase class. In fact, this is the base class for all buttons in WPF and it adds useful
functionality for buttons. This includes automatically converting certain keyboard events to
mouse events, so that users can interact with the buttons without using a mouse.

The Button class itself adds little to its inherited members with only three related bool
properties; two that specify whether a button is the default button and one that specifies
whether the button is a cancel button. We'll see an example of this shortly. It has an
additional two protected overridden methods that get called when the button is clicked or
when an automation peer is created for it.

While WPF enables us to modify existing controls to such a degree that we rarely need to
create our own, it is important to be aware of this inheritance hierarchy so that we can
extend the appropriate and most lightweight base class that fulfills our requirements when
we need to.

Using the Right Controls for the Job Chapter 5

[186]

For example, if we wanted to create our own custom button, it would typically make more
sense to extend the ButtonBase class, rather than the Button class, and if we wanted to
create a totally unique control, we could extend the FrameworkElement class. Now that we
have a good understanding of the make-up of the available controls, let's see how they are
displayed by the WPF layout system.

Laying it on the line
In WPF, the layout system is responsible for attaining the sizes of each element to be
displayed, positioning them on screen, and then drawing them. As controls can be
contained within other controls, the layout system works recursively, with each child
control's overall position being determined by the position of its parent panel control.

The layout system first measures each child in each panel in what is known as a measure
pass. During this pass, each panel calls the Measure method of each child element and they
specify how much space they would ideally like to have; this determines the
UIElement.DesiredSize property value. Note that this is not necessarily how much
space they will be given.

After the measure pass comes the arrange pass, when each panel calls the Arrange method
of each child element. During this pass, the panels generate the bounding boxes of each of
their child elements, dependent upon their DesiredSize values. The layout system will
adjust these sizes to add any required margins or additional adjustments that may be
needed.

It returns a value to the input parameter of the panels' ArrangeOverride method and each
panel performs its own specific layout behavior before returning the possibly adjusted
value. The layout system performs any remaining required adjustments before returning
execution to the panel and completing the layout process.

We need to be careful when developing our applications to ensure that we do not
unnecessarily trigger additional passes of the layout system, as this can lead to poor
performance. This can occur when adding or removing items in a collection, applying
transforms on the elements, or by calling the UIElement.UpdateLayout method, which
forces a new layout pass.

Using the Right Controls for the Job Chapter 5

[187]

Containing controls
The existing controls can mostly be split into two main categories: those that provide layout
support for other controls and those that make up the visible UI, and are arranged in it by
the first category of controls. The first category of controls are of course panels and they
provide a variety of ways to arrange their child controls in the UI.

Some provide resizing capabilities, while others don't, and some are more efficient than
others, so it's important to use the right panel for the job at hand. Additionally, different
panels offer different layout behaviors, so it is good to know what the available panels are
and what they each offer us in terms of layout.

All panels extend the abstract Panel class, and that extends the FrameworkElement class
so it has all of the members and functionality of that class. However, it doesn't extend the
Control class and so it cannot inherit its properties. It therefore adds its own Background
property to enable users to color the gaps between the panel's various items.

The Panel class also provides a Children property that represents the items in each panel,
although we do not typically interact with this property unless creating a custom panel.
Instead, we can populate this collection by simply declaring our child elements directly
within the panel element in XAML.

We are able to do this because the Panel class specifies the Children property in a
ContentPropertyAttribute attribute in its class definition. While the Content property
of a ContentControl normally enables us to add a single item of content, we are able to
add multiple items into panels because their Children property, which is set as the
content, is a collection.

Another Panel class property that we might need to use is the IsItemsHost property,
which specifies whether a panel is to be used as a container for the items of an
ItemsControl element, or not. The default value is false, so it makes no sense to
explicitly set this property to false. In fact, it is only ever required in a very particular
situation.

That situation is when we are replacing the default panel of an ItemsControl, or one of its
derived classes, such as a ListBox, in a ControlTemplate. By setting this property to
true on a panel element in a ControlTemplate, we are telling WPF to place the generated
collection elements in the panel. Let's see a quick example of this:

<ItemsControl ItemsSource="{Binding Users}">
 <ItemsControl.Template>
 <ControlTemplate TargetType="{x:Type ItemsControl}">
 <StackPanel Orientation="Horizontal" IsItemsHost="True" />

Using the Right Controls for the Job Chapter 5

[188]

 </ControlTemplate>
 </ItemsControl.Template>
</ItemsControl>

In this simple example, we are replacing the default internal items panel of the
ItemsControl element with a horizontal StackPanel. Note that this is a permanent
replacement and no one can make further changes to this without providing a new
ControlTemplate. There is however a far easier way to achieve the same result and we
saw an example of this in Chapter 4, Becoming Proficient with Data Binding:

<ItemsControl ItemsSource="{Binding Users}">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
</ItemsControl>

In this alternative example, we simply provide a new ItemsPanelTemplate for the
ItemsControl through its ItemsPanel property. Using this code, the internal panel can
still be easily changed without the need to provide a new ControlTemplate and so when
we don't want other users to be able to swap out the inner panel, we use the first method,
otherwise, we use this method.

The Panel class also declares a ZIndex Attached Property, which can be used by child
elements to specify a layered order within the panel. Child elements with higher values will
appear above, or in front of, elements with lower values, although this property is ignored
in panels that do not overlap their children. We'll see an example of this in the next section,
so let's now focus on the panels that derive from the Panel class and what they offer us.

Canvas
The Canvas class enables us to explicitly position child elements using combinations of the
Canvas.Top, Canvas.Left, Canvas.Bottom, and Canvas.Right Attached Properties.
This is vaguely similar to the old Windows Forms system of control placement.

However, when using WPF, we don't typically layout UI controls in a Canvas. Instead, we
tend to use them more for displaying shapes, constructing graphs, showing animations, or
drawing applications. Take the following example:

<Canvas Width="256" Height="109" Background="Black">
 <Canvas.Resources>
 <Style TargetType="{x:Type Ellipse}">
 <Setter Property="Width" Value="50" />

Using the Right Controls for the Job Chapter 5

[189]

 <Setter Property="Height" Value="50" />
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="3" />
 </Style>
 </Canvas.Resources>
 <Canvas Canvas.Left="3" Canvas.Top="3" Background="Orange"
 Width="123.5" Height="50">
 <Ellipse Canvas.Top="25" Canvas.Left="25" Fill="Cyan" />
 </Canvas>
 <Canvas Canvas.Left="129.5" Canvas.Top="3" Background="Orange"
 Width="123.5" Height="50" Panel.ZIndex="1" />
 <Canvas Canvas.Left="3" Canvas.Top="56" Background="Red" Width="250"
 Height="50" ClipToBounds="True">
 <Ellipse Canvas.Top="-25" Canvas.Left="175" Fill="Lime" />
 </Canvas>
 <Ellipse Canvas.Top="29.5" Canvas.Left="103" Fill="Yellow" />
</Canvas>

This example demonstrates a number of important points, so let's first see the visual output
of this code before discussing it:

The top-left rectangle is the output from one canvas, and the top-right and bottom ones are
from two other canvas instances. They are all contained within a parent canvas element
with a black background. The three inner canvases are spaced to give the effect that they
each have a border. They have been declared in the order of top-left, top-right, bottom, and
the last element to be declared is, the middle circle.

Using the Right Controls for the Job Chapter 5

[190]

The left circle is being drawn in the top-left canvas and we can see where it is overlapping
the canvas' apparent bottom border, which shows that it is not being clipped by its parent
canvas. However, it is being clipped by the lower canvas element and this demonstrates
that UI elements that are declared later will be displayed over the top of earlier declared
elements.

Nevertheless, the second canvas to be declared is clipping the middle circle, which was the
last declared element. This demonstrates that setting the Panel.ZIndex property on an
element to any positive number will position that element above all others that have not
explicitly set this property. The default value for this property is zero, so an element that
has this property set to 1 will be rendered on top of all elements that have not explicitly set
a value for it.

The next element to be declared is the bottom rectangle and the right circle is declared
within it. Now, as this element is declared after the top canvases, you might expect that the
right circle would overlap the upper-right canvas. While this would normally be the case,
this won't happen with our example for two reasons.

The first, as we've just found out, is because the upper-right panel has a higher ZIndex
property value than the lower panel and the second reason is because we have set the
UIElement.ClipToBounds property to true, which is used by the Canvas panel to
determine whether it should clip the visual content of any children that may lie outside the
bounds of the panel.

This is commonly used with animations, to enable a visual to be hidden out of the panel
bounds and then slid into view in reaction to some event. We can tell that the right circle
has been clipped by its parent panel because we can see its apparent top border, which is
outside its bounds.

The last element to be declared is the middle circle and we can see that, apart from the
overlapping canvas element with the higher ZIndex property value, it overlaps all of the
other elements. Note that the Canvas panel does not perform any kind of resizing on its
children, so it is not typically used for generating form type UI.

DockPanel
The DockPanel class is primarily used in the top levels of the control hierarchy to lay out
the top-level controls. It provides us with the ability to dock controls to various parts of the
screen, for example, a menu docked at the top, a context menu on the left, a status bar at the
bottom and our main View content control in the remainder of the screen:

Using the Right Controls for the Job Chapter 5

[191]

This layout shown in the preceding diagram can be easily achieved with just the following
XAML:

<DockPanel>
 <DockPanel.Resources>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="FontSize" Value="14" />
 </Style>
 <Style TargetType="{x:Type Border}">
 <Setter Property="BorderBrush" Value="Black" />
 <Setter Property="BorderThickness" Value="1" />
 </Style>
 </DockPanel.Resources>
 <Border Padding="0,3" DockPanel.Dock="Top">
 <TextBlock Text="Menu Bar" />
 </Border>
 <Border Padding="0,3" DockPanel.Dock="Bottom">
 <TextBlock Text="Status Bar" />
 </Border>
 <Border Width="100" DockPanel.Dock="Left">
 <TextBlock Text="Context Menu" TextWrapping="Wrap" />
 </Border>
 <Border>
 <TextBlock Text="View" />
 </Border>
</DockPanel>

Using the Right Controls for the Job Chapter 5

[192]

We specify where we want each element within the panel to be docked using the
DockPanel.Dock Attached Property. We can specify the left, right, top, and bottom of the
panel. The remaining space is normally filled by the last child that does not explicitly set
one of the Dock property. However, if that is not the behavior that we want, then we can set
the LastChildFill property to false.

The DockPanel will automatically resize itself to fit its content unless its dimensions are
specified, either explicitly using the Width and Height properties, or implicitly by a parent
panel. If it and its children both have dimensions specified for them, there is a chance that
certain children will not be provided with enough space and not be displayed correctly, as
the last child is the only child that can be resized by the DockPanel. It should also be noted
that this panel does not overlap its child elements.

Also note that the order that the children are declared in will affect the space and position
that they are each provided with. For example, if we wanted the menu bar to fill the top of
the screen, the context menu to take the remaining left side, and the View and the status bar
to take the remaining space, we could just declare the context menu before the status bar:

 ...
 <Border Padding="0,3" DockPanel.Dock="Top">
 <TextBlock Text="Menu Bar" />
 </Border>
 <Border Width="100" DockPanel.Dock="Left">
 <TextBlock Text="Context Menu" TextWrapping="Wrap" />
 </Border>
 <Border Padding="0,3" DockPanel.Dock="Bottom">
 <TextBlock Text="Status Bar" />
 </Border>
 <Border>
 <TextBlock Text="View" />
 </Border>
 ...

This slight change would result in the following layout:

Using the Right Controls for the Job Chapter 5

[193]

Grid
The Grid panel is by far the most commonly used when it comes to laying out typical UI
controls. It is the most versatile and enables us to perform a number of tricks to end up with
the layout that we require. It offers a flexible row- and column-based layout system that we
can use to build UIs with a fluid layout. Fluid layouts are able to react and change size
when users resize their application windows.

The Grid is one of the few panels that can resize all of its child elements depending on the
space available, which makes it one of the most performance-intensive panels. Therefore, if
we don't need the functionality that it provides, we should use a more performant panel,
such as a Canvas or StackPanel.

The children of a Grid panel can each set their Margin property to be laid out using
absolute coordinates, in a similar fashion to the Canvas panel. However, this should be
avoided wherever possible, because that will break the fluidity of our UI. Instead, we
typically define our desired layout using the grid's RowDefinitions and
ColumnDefinitions collections and the Grid.Row and Grid.Column Attached
Properties.

While we can again hard code exact widths and heights for our rows and columns, we
usually try to avoid doing so for the same reason. Instead, we generally take advantage of
the grid's sizing behavior and declare our rows and columns, predominantly using one of
two values.

Using the Right Controls for the Job Chapter 5

[194]

The first is the Auto value, which takes its size from its content and the second is the
default * star-sized value, which takes all of the remaining space. Typically, we set all
columns or rows to Auto except the one(s) that contain(s) the most important data, which
is/are set to *.

Note that if we have more than one star-sized column, then the space is normally divided
equally between them. However, if we need unequal divisions of the remaining space, then
we can specify a multiplier number with the asterisk, which will multiply the proportion of
space that that row or column will be provided with. Let's see an example to help to clarify
this:

<Grid TextElement.FontSize="14" Width="300" Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2.5*" />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Grid.ColumnSpan="3" HorizontalAlignment="Center"
 VerticalAlignment="Center" Text="Are you sure you want to continue?"
 Margin="40" />
 <Button Grid.Row="1" Grid.Column="1" Content="OK" IsDefault="True"
 Height="26" Margin="0,0,2.5,0" />
 <Button Grid.Row="1" Grid.Column="2" Content="Cancel" IsCancel="True"
 Height="26" Margin="2.5,0,0,0" />
</Grid>

This example demonstrates a number of points, so let's see the rendered output before
continuing:

Using the Right Controls for the Job Chapter 5

[195]

Here, we have a very basic confirmation dialog control. It is formed with a Grid panel with
three columns and two rows. Note that a single star-sizing is used as the default width and
height values for the ColumnDefinition and RowDefinition elements respectively; we
do not need to explicitly set them and can simply declare empty elements. Also note that
star-sizing will only work when the Grid panel has some size set on it, as we have done
here.

Therefore, in our example, the second and third columns and the first row will use star-
sizing and take all of the remaining space. The first column also uses star-sizing, however,
it specifies a multiplier value of 2.5. As such, it will be provided with two and a half times
the amount of space that the other two columns will each have.

Note that this first column is only used to push the buttons in the other two columns to the
correct position. While the TextBlock element is declared in the first column, it does not
only reside in that column, because it has also specified the Grid.ColumnSpan Attached
Property, which allows it to spread out across multiple columns. The
Grid.RowSpan Attached Property does the same for rows.

The Grid.Row and Grid.Column Attached Properties are used by each element to specify
which cell they should be rendered in. However, the default value for these properties is
zero and so, when we want to declare an element within the first column or row of the
panel, we can omit the setting of these properties, as has been done for the TextBlock in
our example.

The OK button has been declared in the second row and column and sets
the IsDefault key to true, which enables users to invoke it by pressing the Enter key on
their keyboards. It is also responsible for the blue border on the button and we can use this
property to style the default button differently in our own templates. The Cancel button sits
next to it in the third column and sets the IsCancel property to true, which enables the
users to select it by pressing the Esc key on their keyboards.

Note that we could have set the lower RowDefinition.Height property to 26 instead of
setting that on each button explicitly and the end result would have been the same, as the
Auto value would be calculated from their height anyway. Also, note that the Margin
property has been set on a few elements here for spacing purposes only, rather than for
absolute positioning purposes.

Using the Right Controls for the Job Chapter 5

[196]

There are two other useful properties declared by the Grid class. The first is the
ShowGridLines property, which as you can imagine, shows the borders of the rows and
columns in the panel when set to true. While not really required for simple layouts as in
the previous example, this can be useful while developing more complicated layouts.
However, due to its poor performance, this feature should never be utilized in production
XAML:

<Grid TextElement.FontSize="14" Width="300" Margin="10"
 ShowGridLines="True">
 ...
</Grid>

Let's see what this looks like with visible grid lines now:

The other useful property is the IsSharedSizeScope Attached Property, which enables us
to share sizing information between two or more Grid panels. We can achieve this by
setting this property to true on a parent panel and then specifying the SharedSizeGroup
property on the relevant ColumnDefinition and/or RowDefinition elements of the inner
Grid panels.

There are a few conditions that we need to adhere to in order to get this to work and the
first relates to scope. The IsSharedSizeScope property needs to be set on a parent
element, but if that parent element is within a resource template and the definition
elements that specify the SharedSizeGroup property are outside that template then it will
not work. It will, however, work in the opposite direction.

Using the Right Controls for the Job Chapter 5

[197]

The other point to be aware of is that star-sizing is not respected when sharing sizing
information. In these cases, the star values of any definition elements will be read as Auto,
so we do not typically set the SharedSizeGroup property on our star-sized column.
However, if we set it on the other columns, then we will be left with our desired layout.
Let's see an example of this:

<Grid TextElement.FontSize="14" Margin="10" IsSharedSizeScope="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid TextElement.FontWeight="SemiBold" Margin="0,0,0,3"
 ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" SharedSizeGroup="Name" />
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" SharedSizeGroup="Age" />
 </Grid.ColumnDefinitions>
 <TextBlock Text="Name" />
 <TextBlock Grid.Column="1" Text="Comments" Margin="10,0" />
 <TextBlock Grid.Column="2" Text="Age" />
 </Grid>
 <Separator Grid.Row="1" />
 <ItemsControl Grid.Row="2" ItemsSource="{Binding Users}">
 <ItemsControl.ItemTemplate>
 <DataTemplate DataType="{x:Type DataModels:User}">
 <Grid ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" SharedSizeGroup="Name" />
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" SharedSizeGroup="Age" />
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Name}" />
 <TextBlock Grid.Column="1" Text="Star-sized column takes all
 remaining space" Margin="10,0" />
 <TextBlock Grid.Column="2" Text="{Binding Age}" />
 </Grid>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
</Grid>

Using the Right Controls for the Job Chapter 5

[198]

In this example, we have an ItemsControl that is data bound to a slightly edited version
of our Users collection from our earlier examples. Previously, all of the user names were of
a similar length, so one has been edited to demonstrate this point more clearly. The
ShowGridLines property has also been set to true on the inner panels for the same
reason.

In the example, we first set the IsSharedSizeScope Attached Property to true on the
parent Grid panel and then apply the SharedSizeGroup property to the definitions of the
inner Grid controls, which are declared inside the outer panel and within the
DataTemplate element. Let's see the rendered output of this code before continuing:

Note that we have provided the same number of columns and group names for the
columns inside and outside of the DataTemplate element, which is essential for this
functionality to work. Also note that we have not set the SharedSizeGroup property on
the middle column, which is star-sized.

Grouping just the other two columns will have the same visual effect as grouping all three,
but without losing the star-sizing on the middle column. However, let's see what would
happen if we also set the SharedSizeGroup property on the middle column definitions:

<ColumnDefinition SharedSizeGroup="Comments" />

As expected, we have lost the star-sizing on our middle column and the remaining space
has now been applied to the last column:

Using the Right Controls for the Job Chapter 5

[199]

The Grid panel within the template will be rendered for each item in the collection and so
this will actually result in several panels, each with the same group names and therefore,
also column spacing. It is important that we set the IsSharedSizeScope property to true
on the Grid panel that is the common parent to all of the inner panels that we wish to share
sizing information between.

StackPanel
The StackPanel is one of the WPF panels that only provides limited resizing abilities to its
child items. It will automatically set the HorizontalAlignment and VerticalAlignment
properties of each of its children to Stretch, as long as they don't have explicit sizes
specified. In these cases alone, the child elements will be stretched to fit the size of the
containing panel. This can be easily demonstrated as follows:

<Border Background="Black" Padding="5">
 <Border.Resources>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="Padding" Value="5" />
 <Setter Property="Background" Value="Yellow" />
 <Setter Property="TextAlignment" Value="Center" />
 </Style>
 </Border.Resources>
 <StackPanel TextElement.FontSize="14">
 <TextBlock Text="Stretched Horizontally" />
 <TextBlock Text="With Margin" Margin="20" />
 <TextBlock Text="Centered Horizontally"
 HorizontalAlignment="Center" />
 <Border BorderBrush="Cyan" BorderThickness="1" Margin="0,5,0,0"
 Padding="5" SnapsToDevicePixels="True">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Stretched Vertically" />
 <TextBlock Text="With Margin" Margin="20" />
 <TextBlock Text="Centered Vertically"
 VerticalAlignment="Center" />
 </StackPanel>
 </Border>
 </StackPanel>
</Border>

Using the Right Controls for the Job Chapter 5

[200]

This panel literally lays each child element out one after the other, vertically by default, or
horizontally when its Orientation property is set to Horizontal. Our example uses both
orientations, so let's take a quick look at its output before continuing:

Our whole example is wrapped in a Border element with a black background. In its
Resources section, we declared a few style properties for the TextBlock elements in our
example. Inside the border, we declare our first StackPanel control, with its default
vertical orientation. In this first panel, we have three TextBlock elements and another
StackPanel wrapped in a border.

The first TextBlock element is automatically stretched to fit the width of the panel. The
second adds a margin, but would otherwise also be stretched across the width of the panel.
The third, however, has its HorizontalAlignment property explicitly set to Center and
so it is not stretched to fit by the panel.

The inner panel has three TextBlock elements declared inside it and has its Orientation
property set to Horizontal. Its children are therefore laid out horizontally. Its border is
colored, so that it is easier to see its bounds. Note the use of the SnapsToDevicePixels
property set on it.

Using the Right Controls for the Job Chapter 5

[201]

As WPF uses device-independent pixel settings, thin straight lines can sometimes lie across
individual pixel boundaries and appear anti-aliased. Setting this property to true will force
the element to be rendered exactly in line with the physical pixels, using device-specific
pixel settings and forming a clearer, sharper line.

The first TextBlock element in the lower panel is automatically stretched to fit the height
of the panel. As with the elements in the upper panel, the second adds a margin, but would
otherwise also be stretched across the height of the panel. The third, however, has its
VerticalAlignment property explicitly set to Center and so it is not stretched vertically
to fit by the panel.

As a side note, we have used the hexadecimal entity to add a new line in some of our text
strings. This could also have been achieved using the TextBlock.TextWrapping property
and hard coding a Width for each element, but this way is obviously far simpler.

UniformGrid
The UniformGrid panel is a lightweight panel that provides a simple way to create a grid
of items, where each item is of the same size. We can set its Row and Column properties to
specify how many rows and columns we want our grid to have. If we do not set one or both
of these properties, the panel will implicitly set them for us, depending upon the available
space it has and the size of its children.

It also provides us with a FirstColumn property that will affect the column that the first
child item will be rendered in. For example, if we set this property to 2 then the first child
will be rendered in the third column. This is perfect for a calendar control, so let's take a
look at how we might create the following output using the UniformGrid:

Using the Right Controls for the Job Chapter 5

[202]

As you can see, a calendar control often needs to have blank spaces in the first few columns
and so the FirstColumn property achieves this requirement simply. Let's see the XAML
that defines this calendar example:

<StackPanel TextElement.FontSize="14" Background="White">
 <UniformGrid Columns="7" Rows="1">
 <UniformGrid.Resources>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="Height" Value="35" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="Padding" Value="0,5,0,0" />
 </Style>
 </UniformGrid.Resources>
 <TextBlock Text="Mon" />
 <TextBlock Text="Tue" />
 <TextBlock Text="Wed" />
 <TextBlock Text="Thu" />
 <TextBlock Text="Fri" />
 <TextBlock Text="Sat" />
 <TextBlock Text="Sun" />
 </UniformGrid>
 <ItemsControl ItemsSource="{Binding Days}" Background="Black"
 Padding="0,0,1,1">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <UniformGrid Columns="7" FirstColumn="2" />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Border BorderBrush="Black" BorderThickness="1,1,0,0"
 Background="White">
 <TextBlock Text="{Binding}" Height="35"
 HorizontalAlignment="Center" Padding="0,7.5,0,0" />
 </Border>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
</StackPanel>

We start with a StackPanel that is used to stack one UniformGrid panel directly above an
ItemsControl that uses another one as its ItemsPanel and specifies a font size to use
within the control. The top UniformGrid panel declares a single row of seven columns and
some basic TextBlock styles. It has seven child TextBlock items that output the names of
the days in a week.

Using the Right Controls for the Job Chapter 5

[203]

The ItemsControl element has its Background property set to Black to black out days
not in the current month, and its Padding set to make the background appear like a border
to the right and bottom of the calendar. The top and left borders come from the individual
cells in the UniformGrid panel. The ItemsControl.ItemsSource property is data bound
to a Days property in our View Model, so let's take a look at that now:

private List<int> days = Enumerable.Range(1, 31).ToList();

...

public List<int> Days
{
 get { return days; }
 set { days = value; NotifyPropertyChanged(); }
}

Note the use of the Enumerable.Range method to populate the collection. It provides a
simple way to generate a contiguous sequence of integers from the supplied start and
length input parameters. As a LINQ method, it is implemented using deferred execution
and the actual values are not generated until actually accessed.

The second UniformGrid panel, which is set as the ItemsControl.ItemsPanel, only
specifies that it should have seven columns, but leaves the number of rows to be calculated
from the number of data bound items. Note also that we have hard coded a value of 2 to
the FirstColumn property, although in a proper control, we would typically data bind the
value for the relevant month to it instead.

Finally, we use a DataTemplate to define what each day on the calendar should look like.
Note that we do not need to specify a value for its DataType property in this example,
because we are data binding to the whole data source object, which in this case is just an
integer. Let's now move on to investigate the WrapPanel panel.

WrapPanel
The WrapPanel panel is similar to StackPanel, except that it will stack its children in both
directions by default. It starts by laying out the child items horizontally and when it runs
out of space on the first row, it automatically wraps the next item onto a new row and
continues to lay out the remaining controls. It repeats this process using as many rows as
are required, until all of the items are rendered.

Using the Right Controls for the Job Chapter 5

[204]

However, it also provides an Orientation property like StackPanel, and this will affect
its layout behavior. If the Orientation property is changed from the default value of
Horizontal to Vertical, then the panel's child items will be laid out vertically, from top
to bottom until there is no more room in the first column. The items will then wrap to the
next column and will continue in this way until all of the items have been rendered.

This panel also declares ItemHeight and ItemWidth properties that enable it to restrict
items' dimensions and to produce a layout behavior similar to the UniformGrid panel.
Note that the values will not actually resize each child item, but merely restrict the available
space that they are provided with in the panel. Let's see an example of this:

<WrapPanel ItemHeight="50" Width="150" TextElement.FontSize="14">
 <WrapPanel.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Width" Value="50" />
 </Style>
 </WrapPanel.Resources>
 <Button Content="7" />
 <Button Content="8" />
 <Button Content="9" />
 <Button Content="4" />
 <Button Content="5" />
 <Button Content="6" />
 <Button Content="1" />
 <Button Content="2" />
 <Button Content="3" />
 <Button Content="0" Width="100" />
 <Button Content="." />
</WrapPanel>

Note that while similar to the output of a UniformGrid panel, the output of this example
could not actually be achieved with that panel, because one of the child items is a different
size to the others. Let's see the visual output of this example:

Using the Right Controls for the Job Chapter 5

[205]

We first declare the WrapPanel and specify that each child should only be provided with a
height of 50 pixels, while the panel itself should be 150 pixels wide. In the Resources
section, we set the width of each button to be 50 pixels wide, therefore enabling three
buttons to sit next to each other on each row, before wrapping items to the next row.

Next, we simply define the eleven buttons that make up the panel's children, specifying
that the zero button should be twice as wide as the others. Note that this would not have
worked if we had set the ItemWidth property to 50 pixels, along with the ItemHeight
property. In that case, we would have seen half of the zero button, with the other half
covered by the period button and a blank space where the period button currently is.

Providing custom layout behavior
When the layout behavior of the built-in panels do not meet our requirements, we can
easily define a new panel with custom layout behavior. All we need to do is to declare a
class that extends the Panel class and to override its MeasureOverride and
ArrangeOverride methods.

In the MeasureOverride method, we simply call the Measure method on each child item
from the Children collection, passing in a Size element set to
double.PositiveInfinity. This is equivalent to saying "set your DesriredSize
property as if you had all of the space that you could possibly need" to each child item.

In the ArrangeOverride method, we use the newly determined DesriredSize property
value of each child item to calculate its required position and call its Arrange method to
render it in that position. Let's look at an example of a custom panel that positions its items
equally around the circumference of a circle:

using System;
using System.Windows;
using System.Windows.Controls;

namespace CompanyName.ApplicationName.Views.Panels
{
 public class CircumferencePanel : Panel
 {
 public Thickness Padding { get; set; }

 protected override Size MeasureOverride(Size availableSize)
 {
 foreach (UIElement element in Children)
 {
 element.Measure(

Using the Right Controls for the Job Chapter 5

[206]

 new Size(double.PositiveInfinity, double.PositiveInfinity));
 }
 return availableSize;
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 if (Children.Count == 0) return finalSize;
 double currentAngle = 90 * (Math.PI / 180);
 double radiansPerElement =
 (360 / Children.Count) * (Math.PI / 180.0);
 double radiusX = finalSize.Width / 2.0 - Padding.Left;
 double radiusY = finalSize.Height / 2.0 - Padding.Top;
 foreach (UIElement element in Children)
 {
 Point childPoint = new Point(Math.Cos(currentAngle) * radiusX,
 -Math.Sin(currentAngle) * radiusY);
 Point centeredChildPoint = new Point(childPoint.X +
 finalSize.Width / 2 - element.DesiredSize.Width / 2, childPoint.Y
 + finalSize.Height / 2 - element.DesiredSize.Height / 2);
 Rect boundingBox =
 new Rect(centeredChildPoint, element.DesiredSize);
 element.Arrange(boundingBox);
 currentAngle -= radiansPerElement;
 }
 return finalSize;
 }
 }
}

In our CircumferencePanel class, we first declare our own Padding property of type
Thickness, which will be used to enable the users of the panel to lengthen or shorten the
radius of the circle and therefore, adjust the position of the rendered items within the panel.
The MeasureOverride method is a simple affair, as previously explained.

In the ArrangeOverride method, we calculate the relevant angles to position the child
items with, depending upon how many of them there are. We take the value of our
Padding property into consideration when calculating the X and Y radiuses, so that users
of our custom panel will be better able to control the position of the rendered items.

For each child item in the panel's Children collection, we first calculate the point on the
circle where it should be displayed. We then offset that value using the value of the
element's DesiredSize property, so that the bounding box of each item is centered on that
point.

Using the Right Controls for the Job Chapter 5

[207]

We then create the element's bounding box using a Rect element, with the offset point and
the element's DesiredSize property, and pass that to its Arrange method to render it.
After each element is rendered, the current angle is changed for the next item. Remember
that we can utilize this panel by adding a XAML namespace for the Panels CLR
namespace and setting the ItemsPanel property of an ItemsControl or one of its derived
classes:

xmlns:Panels="clr-namespace:CompanyName.ApplicationName.Views.Panels;
 assembly=CompanyName.ApplicationName.Views"

...

<ItemsControl ItemsSource="{Binding Hours}" TextElement.FontSize="24"
 Width="200" Height="200">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <Panels:CircumferencePanel Padding="20" />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
</ItemsControl>

Given some suitable data, we could use this panel to display the numbers on a clock
control, for example. Let's see the Hours property that the ItemsSource property of our
example ItemsControl is data bound to:

private List<int> hours = new List<int>() { 12 };

public List<int> Hours
{
 get { return hours; }
 set { hours = value; NotifyPropertyChanged(); }
}

...

hours.AddRange(Enumerable.Range(1, 11));

Using the Right Controls for the Job Chapter 5

[208]

As the hour numerals must start with 12 and then go back to 1, we declare the collection
with the 12 element initially. At some later stage, possibly during construction, we then add
the remaining numbers to the collection and this is what it looks like when using our new
panel:

This concludes our coverage of the main panels that are available in WPF. While we don't
have the space to have an in-depth look at every other WPF control, we'll find tips and
tricks for a number of them throughout this book. Instead, let's now focus on a few essential
controls and what they can do for us.

Content controls
While this control is not often used directly, one use for it is to render a single data item
according to a particular template. In fact, we often use a ContentControl to display our
View Models and use a DataTemplate object that renders the associated View.
Alternatively, we might use some form of ItemsControl to display a group of items and a
ContentControl to display the selected item.

As we found out earlier, when looking at the inheritance hierarchy of the Button control,
the ContentControl class extends the Control class and adds the ability for derived
classes to contain any single CLR object. Note that if we need to specify more than a single
object of content, we can use a single panel object that contains further objects:

<Button Width="80" Height="30" TextElement.FontSize="14">
 <StackPanel Orientation="Horizontal">
 <Rectangle Fill="Cyan" Stroke="Black" StrokeThickness="1" Width="16"
 Height="16" />
 <TextBlock Text="Cyan" Margin="5,0,0,0" />
 </StackPanel>
</Button>

Using the Right Controls for the Job Chapter 5

[209]

We can specify this content through the use of the Content property. However, the
ContentControl class specifies the Content property in a ContentPropertyAttribute
attribute in its class definition and this enables us to set the content by simply declaring the
child element directly within the control in the XAML. This attribute is used by the XAML
processor when it processes XAML child elements.

If the content is of type string, then we can use the ContentStringFormat property to
specify a particular format for it. Otherwise, we can use the ContentTemplate property to
specify a DataTemplate to use while rendering the content. Alternatively, the
ContentTemplateSelector property is of type DataTemplateSelector and also
enables us to select a DataTemplate, but based upon some custom condition that we may
have. All derived classes have access to these properties in order to shape the output of
their content.

However, this control is also able to display many primitive types without us having to
specify a custom template. Let's move on to the next section now, where we'll find out
exactly how it manages to accomplish this.

Presenting content
In WPF, there is a special element that is essential but often little understood. The
ContentPresenter class basically presents content, as its name suggests. It is actually
used internally within ContentControl objects to present their content.

That is its sole job and it should not be used for other purposes. The only time that we
should declare these elements is within a ControlTemplate of a
ContentControl element or one of its many derived classes. In these cases, we declare
them where we want the actual content to appear.

Using the Right Controls for the Job Chapter 5

[210]

Note that specifying the TargetType property on a ControlTemplate when using a
ContentPresenter will result in its Content property being implicitly data bound to the
Content property of the relevant ContentControl element. We are however free to data
bind it explicitly to whatever we like:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
 <ContentPresenter Content="{TemplateBinding ToolTip}" />
</ControlTemplate>

The ContentTemplate and ContentTemplateSelector properties both mirror those of
the ContentControl class and also enable us to select a DataTemplate based upon a
custom condition. Like the Content property, both of these properties will also be
implicitly data bound to the properties of the same names in the templated parent if the
TargetType property of the ControlTemplate has been set.

This usually saves us from having to explicitly data bind these properties, although there
are a few controls where the names of the relevant properties do not match up. In these
cases, we can use the ContentSource property as a shortcut to data bind the Content,
ContentTemplate, and ContentTemplateSelector properties.

If we set this property to Header, for example, the Framework will look for a property
named Header on the ContentControl object to implicitly data bind to the Content
property of the presenter. Likewise, it will look for properties named HeaderTemplate and
HeaderTemplateSelector to implicitly data bind to the ContentTemplate and
ContentTemplateSelector properties.

This is primarily used in a ControlTemplate for a HeaderedContentControl element or
one of its derived classes:

<ControlTemplate x:Key="TabItemTemplate" TargetType="{x:Type TabItem}">
 <StackPanel>
 <ContentPresenter ContentSource="Header" />
 <ContentPresenter ContentSource="Content" />
 </StackPanel>
</ControlTemplate>

There are specific rules that determine what the ContentPresenter will display. If the
ContentTemplate or ContentTemplateSelector property is set, then the data object
specified by the Content property will have the resulting data template applied to it.
Likewise, if a data template of the relevant type is found within the scope of the
ContentPresenter element, it will be applied.

Using the Right Controls for the Job Chapter 5

[211]

If the content object is a UI element, or one is returned from a type converter, then the
element is displayed directly. If the object is a string, or a string is returned from a type
converter, then it will be set as the Text property of a TextBlock control and that will be
displayed. Likewise, all other objects simply have the ToString method called on them
and then this output is rendered in a standard TextBlock at runtime.

Items controls
We've already seen a fair number of examples of the ItemsControl class, but we'll now
take a closer look at this control. In the simplest terms, an ItemsControl class contains a
variable number of ContentPresenter elements and enables us to display a collection of
items. It is the base class for most common collection controls, such as the ListBox,
ComboBox, and TreeView controls.

Each of these derived classes adds a specific look and set of capabilities, such as a border
and the notion of a selected item. If we do not require these additional features and simply
want to display a number of items, then we should just use the ItemsControl, because it
is more efficient than its derived classes.

When using the Model-View-ViewModel (MVVM) pattern, we typically data bind a
collection that implements the IEnumerable interface from our View Model to the
ItemsControl.ItemsSource property. However, there is also an Items property that
will reflect the items in the data bound collection.

To clarify this further, either property can be used to populate the collection of items to
display. However, only one can be used at a time, so if you have data bound a collection to
the ItemsSource property, then you cannot add items using the Items property. In this
case, the Items collection will become read-only.

If we need to display a collection of items that don't implement the IEnumerable interface,
then we will need to add them using the Items property. Note that the Items property is
implicitly used when items are declared as the content of an ItemsControl element in
XAML. However, when using MVVM, we generally use the ItemsSource property.

When displaying items in an ItemsControl, each item in the collection will implicitly be
wrapped in a ContentPresenter container element. The type of container element will
depend upon the type of collection control used. For example, a ComboBox would wrap its
items in ComboBoxItem elements.

Using the Right Controls for the Job Chapter 5

[212]

The ItemContainerStyle and ItemContainerStyleSelector properties enable us to
provide a style for these container items. We must ensure that the styles that we provide
are targeted to the correct type of container control. For example, if we were using a
ListBox, then we would need to provide a style targeting the ListBoxItem type, as in the
following example.

Note that we can explicitly declare these container items, although there is little point in
doing so, as it will otherwise be done for us. Furthermore, when using MVVM, we do not
typically work with UI elements, preferring to work with data objects in the View Models
and data bind to the ItemsSource property instead.

As we have already seen, the ItemsControl class has an ItemsPanel property of type
ItemsPanelTemplate that enables us to change the type of panel that the collection
control uses to layout its items. When we want to customize the template of an
ItemsControl, we have two choices regarding how we render the control's child items:

<ControlTemplate x:Key="Template1" TargetType="{x:Type ItemsControl}">
 <StackPanel Orientation="Horizontal" IsItemsHost="True" />
</ControlTemplate>

We already saw an example of the preceding method in the previous section. In this way,
we specify the actual items panel itself and set the IsItemsHost property to true on it to
indicate that it is indeed to be used as the control's items panel. Using the alternative
method, we need to declare an ItemsPresenter element, which specifies where the actual
items panel will be rendered. Note that this element will be replaced by the actual items
panel being used at runtime:

<ControlTemplate x:Key="Template2" TargetType="{x:Type ItemsControl}">
 <ItemsPresenter />
</ControlTemplate>

As with the ContentControl class, the ItemsControl class also provides properties that
enable us to shape its data items. The ItemTemplate and ItemTemplateSelector
properties let us apply a data template for each item. However, if we just need a simple
textual output, there are alternative methods where we can avoid the need to define a data
template at all.

We can use the DisplayMemberPath property to specify the name of the property from the
object to display the value. Alternatively, we can set the ItemStringFormat property to
format the output as a string, or as we saw earlier, just provide some meaningful output
from the class' ToString method of the data object.

Using the Right Controls for the Job Chapter 5

[213]

Another interesting property is the AlternationCount property, which enables us to style
alternating containers differently. We can set it to any number and the alternating sequence
will repeat after that many items have been rendered. As a simple example, let's use a
ListBox because the ListBoxItem controls that will be wrapped around our items have
appearance properties that we can alternate:

<ListBox ItemsSource="{Binding Users}" AlternationCount="3">
 <ListBox.ItemContainerStyle>
 <Style TargetType="{x:Type ListBoxItem}">
 <Setter Property="FontSize" Value="14" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Padding" Value="5" />
 <Style.Triggers>
 <Trigger Property="ListBox.AlternationIndex" Value="0">
 <Setter Property="Background" Value="Red" />
 </Trigger>
 <Trigger Property="ListBox.AlternationIndex" Value="1">
 <Setter Property="Background" Value="Green" />
 </Trigger>
 <Trigger Property="ListBox.AlternationIndex" Value="2">
 <Setter Property="Background" Value="Blue" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </ListBox.ItemContainerStyle>
</ListBox>

Here, we set the AlternationCount property to 3, so we can have three different styles
for our items and this pattern will be repeated for all three further items. We make a style
for the item containers using the ItemContainerStyle property.

In this style, we use some simple triggers to change the color of the container background,
depending on the value of the AlternationIndex property. Notice that the
AlternationCount property starts at 0, so the first item will have a red background, the
second will have green, the third will have blue, then the pattern will repeat and the fourth
will have red, and so on.

Alternatively, we could have declared an AlternationConverter instance for each
property that we wanted to alter and data bind them to the AlternationIndex property
and the converter. We could create the same visual output using this XAML instead:

<ListBox ItemsSource="{Binding Users}" AlternationCount="3">
 <ListBox.Resources>
 <AlternationConverter x:Key="BackgroundConverter">
 <SolidColorBrush>Red</SolidColorBrush>
 <SolidColorBrush>Green</SolidColorBrush>

Using the Right Controls for the Job Chapter 5

[214]

 <SolidColorBrush>Blue</SolidColorBrush>
 </AlternationConverter>
 </ListBox.Resources>
 <ListBox.ItemContainerStyle>
 <Style TargetType="{x:Type ListBoxItem}">
 <Setter Property="FontSize" Value="14" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Padding" Value="5" />
 <Setter Property="Background"
 Value="{Binding (ItemsControl.AlternationIndex),
 RelativeSource={RelativeSource Self},
 Converter={StaticResource BackgroundConverter}}" />
 </Style>
 </ListBox.ItemContainerStyle>
</ListBox>

The AlternationConverter class works by simply returning the item from its collection
that relates to the specified AlternationIndex value, where the first item is returned for
index zero. Note that we need to include the parenthesis around the data bound class and
property name because it is an Attached Property and we need to use a
RelativeSource.Self binding because the property is set on the item container object
itself. Let's see the output of these two code examples:

There is one more useful property that the ItemsControl class provides and that is the
GroupStyle property, which is used to display the child items in groups. To group items
in the UI, we need to accomplish a few simple tasks. We first need to define XAML
namespaces for our Converters project and the ComponentModel CLR namespace:

xmlns:ComponentModel="clr-
namespace:System.ComponentModel;assembly=WindowsBase"
xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters"

Using the Right Controls for the Job Chapter 5

[215]

Next, we need to data bind a CollectionViewSource instance with one or more
PropertyGroupDescription elements to our Users collection from the previous
example. We then need to set that as the ItemsSource value for the ItemsControl and
then set up its GroupStyle. Let's see the StringToFirstLetterConverter converter
and CollectionViewSource object that we need to declare in the local Resources
section:

<Converters:StringToFirstLetterConverter
x:Key="StringToFirstLetterConverter" />
<CollectionViewSource x:Key="GroupedUsers" Source="{Binding MoreUsers}">
 <CollectionViewSource.GroupDescriptions>
 <PropertyGroupDescription PropertyName="Name"
 Converter="{StaticResource StringToFirstLetterConverter}" />
 </CollectionViewSource.GroupDescriptions>
 <CollectionViewSource.SortDescriptions>
 <ComponentModel:SortDescription PropertyName="Name" />
 </CollectionViewSource.SortDescriptions>
</CollectionViewSource>

We specify the property that we want to use to group items by using the PropertyName
property of the PropertyGroupDescription element. Note that in our case, we only have
a few User objects, and so there would be no groups if we simply grouped by name.
Therefore, we added a converter to return the first letter from each name to group on and
specified it using the Converter property.

We then added a basic SortDescription element to the
CollectionViewSource.SortDescriptions collection in order to sort the User objects.
We specified the Name property in the PropertyName property of the SortDescription
element so that the User objects will be sorted by name. Let’s see the
StringToFirstLetterConverter class now:

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 [ValueConversion(typeof(string), typeof(string))]
 public class StringToFirstLetterConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 if (value == null) return DependencyProperty.UnsetValue;

Using the Right Controls for the Job Chapter 5

[216]

 string stringValue = value.ToString();
 if (stringValue.Length < 1) return DependencyProperty.UnsetValue;
 return stringValue[0];
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 return DependencyProperty.UnsetValue;
 }
 }
}

In this converter, we specify the data types that are involved in the implementation of the
converter in the ValueConversion attribute, even though they are the same type. In the
Convert method, we check the validity of our value input parameter and return the
DependencyProperty.UnsetValue value if it is null. We then call the ToString method
on it and if it is an empty string, we return
the DependencyProperty.UnsetValue value. For all valid string values, we simply
return the first letter.

As we do not need (or would not be able) to convert anything back using this converter, the
ConvertBack method simply returns the DependencyProperty.UnsetValue value. By
attaching this converter to the PropertyGroupDescription element, we are now able to
group by the first letter of each name. Let's now see how we can declare the GroupStyle
object:

<ItemsControl ItemsSource="{Binding Source={StaticResource GroupedUsers}}"
 Background="White" FontSize="14">
 <ItemsControl.GroupStyle>
 <GroupStyle>
 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Name,
 Converter={StaticResource StringToFirstLetterConverter}}"
 Background="Black" Foreground="White" FontWeight="Bold"
 Padding="5,4" />
 </DataTemplate>
 </GroupStyle.HeaderTemplate>
 </GroupStyle>
 </ItemsControl.GroupStyle>
 <ItemsControl.ItemTemplate>
 <DataTemplate DataType="{x:Type DataModels:User}">
 <TextBlock Text="{Binding Name}" Foreground="Black"
 Padding="0,2" />
 </DataTemplate>

Using the Right Controls for the Job Chapter 5

[217]

 </ItemsControl.ItemTemplate>
</ItemsControl>

Note that we need to use the Binding.Source property to access the
CollectionViewSource object named GroupedUsers from the local Resources section.
We then declare the data template that defines what each group header will look like in the
HeaderTemplate property. Here we make use of the StringToFirstLetterConverter
instance that has also been declared in a suitable resource collection and set a few basic
style properties.

Next, we specify a second data template, but one that defines what the items in each group
should look like. We provide a very simple template that merely spaces the elements
slightly and sets a few style properties. Let's see the output of this example:

Adorners
An adorner is a special kind of class that is rendered above all UI controls, in what is
known as an adorner layer. Adorner elements in this layer will always be rendered on top
of the normal WPF controls, regardless of their Panel.ZIndex property setting. Each
adorner is bound to an element of type UIElement and independently rendered in a
position that is relative to the adorned element.

The purpose of the adorner is to provide certain visual cues to the application user. For
example, we could use an adorner to display a visual representation of UI elements that are
being dragged in a drag and drop operation. Alternatively, we could use an adorner to add
handles to a UI control to enable users to resize the element.

Using the Right Controls for the Job Chapter 5

[218]

As the adorner is added to the adorner layer, it is the adorner layer that is the parent of the
adorner, rather than the adorned element. In order to create a custom adorner, we need to
declare a class that extends the Adorner class.

When creating a custom adorner, we need to be aware that we are responsible for writing
the code to render its visuals. However, there are a few different ways to construct our
adorner graphics; we can use the OnRender or OnRenderSizeChanged methods and a
drawing context to draw basic lines and shapes, or we can use the ArrangeOverride
method to arrange .NET controls.

Adorners receive events like other .NET controls, although if we don't need to handle them,
we can arrange for them to be passed straight through to the adorned element. In these
cases, we can set the IsHitTestVisible property to false and this will enable pass-
through hit-testing of the adorned element. Let's look at an example of a resizing adorner
that lets us resize shapes on a canvas.

Before we investigate the adorner class, let's first see how we can use it. Adorners need to
be initialized in code, and so a good place to do this is in the UserControl.Loaded
method, when we can be certain that the canvas and its items will have been initialized.
Note that as adorners are purely UI related, initializing them in the control's code behind
does not present any conflict when using MVVM:

public AdornerView()
{
 InitializeComponent();
 Loaded += View_Loaded;
}

...

private void View_Loaded(object sender, RoutedEventArgs e)
{
 AdornerLayer adornerLayer = AdornerLayer.GetAdornerLayer(Canvas);
 foreach (UIElement uiElement in Canvas.Children)
 {
 adornerLayer.Add(new ResizeAdorner(uiElement));
 }
}

We access the adorner layer for the canvas that we will add the adorners to using the
AdornerLayer.GetAdornerLayer method, passing in the canvas as the Visual input
parameter. In this example, we attach an instance of our ResizeAdorner to each element
in the canvas' Children collection and then add it to the adorner layer.

Using the Right Controls for the Job Chapter 5

[219]

Now, we just need a Canvas panel named Canvas and some shapes to resize:

<Canvas Name="Canvas">
 <Rectangle Canvas.Top="50" Canvas.Left="50" Fill="Lime"
 Stroke="Black" StrokeThickness="3" Width="150" Height="50" />
 <Rectangle Canvas.Top="25" Canvas.Left="250" Fill="Yellow"
 Stroke="Black" StrokeThickness="3" Width="100" Height="150" />
</Canvas>

Let's now see the code in our ResizeAdorner class:

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;

namespace CompanyName.ApplicationName.Views.Adorners
{
 public class ResizeAdorner : Adorner
 {
 private VisualCollection visualChildren;
 private Thumb top, left, bottom, right;

 public ResizeAdorner(UIElement adornedElement) : base(adornedElement)
 {
 visualChildren = new VisualCollection(this);
 top = InitializeThumb(Cursors.SizeNS, Top_DragDelta);
 left = InitializeThumb(Cursors.SizeWE, Left_DragDelta);
 bottom = InitializeThumb(Cursors.SizeNS, Bottom_DragDelta);
 right = InitializeThumb(Cursors.SizeWE, Right_DragDelta);
 }

 private Thumb InitializeThumb(Cursor cursor,
 DragDeltaEventHandler eventHandler)
 {
 Thumb thumb = new Thumb();
 thumb.BorderBrush = Brushes.Black;
 thumb.BorderThickness = new Thickness(1);
 thumb.Cursor = cursor;
 thumb.DragDelta += eventHandler;
 thumb.Height = thumb.Width = 6.0;
 visualChildren.Add(thumb);
 return thumb;
 }

Using the Right Controls for the Job Chapter 5

[220]

 private void Top_DragDelta(object sender, DragDeltaEventArgs e)
 {
 FrameworkElement adornedElement = (FrameworkElement)AdornedElement;
 adornedElement.Height =
 Math.Max(adornedElement.Height - e.VerticalChange, 6);
 Canvas.SetTop(adornedElement,
 Canvas.GetTop(adornedElement) + e.VerticalChange);
 }

 private void Left_DragDelta(object sender, DragDeltaEventArgs e)
 {
 FrameworkElement adornedElement = (FrameworkElement)AdornedElement;
 adornedElement.Width =
 Math.Max(adornedElement.Width - e.HorizontalChange, 6);
 Canvas.SetLeft(adornedElement,
 Canvas.GetLeft(adornedElement) + e.HorizontalChange);
 }

 private void Bottom_DragDelta(object sender, DragDeltaEventArgs e)
 {
 FrameworkElement adornedElement = (FrameworkElement)AdornedElement;
 adornedElement.Height =
 Math.Max(adornedElement.Height + e.VerticalChange, 6);
 }

 private void Right_DragDelta(object sender, DragDeltaEventArgs e)
 {
 FrameworkElement adornedElement = (FrameworkElement)AdornedElement;
 adornedElement.Width =
 Math.Max(adornedElement.Width + e.HorizontalChange, 6);
 }

 protected override void OnRender(DrawingContext drawingContext)
 {
 SolidColorBrush brush = new SolidColorBrush(Colors.Transparent);
 Pen pen = new Pen(new SolidColorBrush(Colors.DeepSkyBlue), 1.0);
 drawingContext.DrawRectangle(brush, pen,
 new Rect(-2, -2, AdornedElement.DesiredSize.Width + 4,
 AdornedElement.DesiredSize.Height + 4));
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 top.Arrange(
 new Rect(AdornedElement.DesiredSize.Width / 2 - 3, -8, 6, 6));
 left.Arrange(
 new Rect(-8, AdornedElement.DesiredSize.Height / 2 - 3, 6, 6));
 bottom.Arrange(new Rect(AdornedElement.DesiredSize.Width / 2 - 3,

Using the Right Controls for the Job Chapter 5

[221]

 AdornedElement.DesiredSize.Height + 2, 6, 6));
 right.Arrange(new Rect(AdornedElement.DesiredSize.Width + 2,
 AdornedElement.DesiredSize.Height / 2 - 3, 6, 6));
 return finalSize;
 }
 protected override int VisualChildrenCount
 {
 get { return visualChildren.Count; }
 }

 protected override Visual GetVisualChild(int index)
 {
 return visualChildren[index];
 }
 }
}

Note that we have declared the Adorners namespace within the Views project, as this is
the only place that it will be used. Inside the class, we declare the VisualCollection
object that will contain the visuals that we want to render and then the visuals themselves,
in the shape of Thumb controls.

We've chosen Thumb elements because they have built-in functionality that we want to take
advantage of. They provide a DragDelta event that we will use to register the users' mouse
movements when they drag each Thumb. These controls are normally used internally in the
Slider and ScrollBar controls to enable users to alter values, so they're perfect for our
purposes here.

We initialize these objects in the constructor, specifying a custom cursor and a different
DragDelta event handler for each Thumb control. In these separate event handlers, we use
the HorizontalChange or VerticalChange properties of the DragDeltaEventArgs
object to specify the distance and direction of the mouse movement that triggered the event.

We use these values to move and/or resize the adorned element by the appropriate amount
and direction. Note that we use the Math.Max method and the value 6 in our example to
ensure that the adorned element cannot be resized smaller than the size of each Thumb
element and the Stroke size of each adorned element.

After the four DragDelta event handlers, we find two different ways to render our adorner
visuals. In the first method, we use the DrawingContext object that is passed into the
OnRender method by the base class to manually draw shapes. This is somewhat similar to
the way that we used to draw in the Control.Paint event handler methods when using
Windows.Forms.

Using the Right Controls for the Job Chapter 5

[222]

In this overridden method, we draw a rectangle that surrounds our element and is four
pixels bigger than it in both dimensions. Note that we define a transparent background for
the drawing brush, as we only want to see the rectangle border. Remember that adorner
graphics are rendered on top of the adorned element, but we do not want to cover it.

In the ArrangeOverride method, we use .NET Framework to render our Visual elements
using their Arrange methods, as we would in a custom panel. Note that we could just as
easily render our rectangle border in this method using a Rectangle element; the
OnRender method was used in this example merely as a demonstration.

In this method, we simply arrange each Visual element at the relevant position and size in
turn. Calculating the appropriate positions can be achieved simply by dividing the width or
height of each adorned element in half and subtracting half of the width or height of each
thumb element.

Finally, we get to the protected overridden VisualChildrenCount property and
GetVisualChild method. The Adorner class extends the FrameworkElement class and
that will normally return either zero or one from the VisualChildrenCount property, as
each instance is normally represented by either no visual, or a single rendered visual.

In our case and other situations when a derived class has multiple visuals to render, it is a
requirement of the layout system that the correct number of visuals is specified. For
example, if we always returned the value 2 from this property, then only two of our
thumbs would be rendered on screen.

Likewise, we also need to return the correct item from our visual collection when requested
to from the GetVisualChild method. If, for example, we always returned the first visual
from our collection, then only that visual would be rendered, as the same visual cannot be
rendered more than once. Let's see what our adorners look like when rendered above each
of our shapes:

Using the Right Controls for the Job Chapter 5

[223]

Modifying existing controls
When we find that the wide range of existing controls doesn't quite meet our needs, we
might think that we need to create some new ones, as we would with other technologies.
When using other UI languages, this might be the case, but with WPF, this is not
necessarily true, as it provides a number of ways to modify the existing controls to suit our
requirements.

As we found out earlier, all classes that extend the FrameworkElement class have access to
the framework's styling capabilities and those that extend the Control class can have their
appearance totally changed through their ControlTemplate property. All of the existing
WPF controls extend these base cases, and so possess these abilities.

In addition to these capabilities that enable us to change the look of the pre-existing WPF
controls, we are also able to leverage the power of Attached Properties to add additional
functionality to them too. In this section, we will investigate these different ways of
modifying the existing controls.

Styling
Setting the various properties of a control is the simplest way to alter its look and enables
us to make either minor or more dramatic changes to it. As most UI elements extend the
Control class, they mostly share the same properties that affect their appearance and
alignment. When defining styles for controls, we should specify their type in the
TargetType property, as this helps the compiler to verify that the properties that we are
setting actually exist in the class:

<Button Content="Go">
 <Button.Style>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Green" />
 <Setter Property="Background" Value="White" />
 </Style>
 </Button.Style>
</Button>

Failing to do so will result in the compiler stating that the member is not recognized or is
not accessible. In these cases, we will need to specify the class type as well, in the format
ClassName.PropertyName:

<Button Content="Go">
 <Button.Style>
 <Style>

Using the Right Controls for the Job Chapter 5

[224]

 <Setter Property="Button.Foreground" Value="Green" />
 <Setter Property="Button.Background" Value="White" />
 </Style>
 </Button.Style>
</Button>

One really useful property that the Style class declares is the BasedOn property. Using
this property, we can base our styles on other styles and this enables us to create a number
of incrementally different versions. Let's highlight this with an example:

<Style x:Key="TextBoxStyle" TargetType="{x:Type TextBox}">
 <Setter Property="SnapsToDevicePixels" Value="True" />
 <Setter Property="Margin" Value="0,0,0,5" />
 <Setter Property="Padding" Value="1.5,2" />
 <Setter Property="TextWrapping" Value="Wrap" />
</Style>
<Style x:Key="ReadOnlyTextBoxStyle" TargetType="{x:Type TextBox}"
 BasedOn="{StaticResource TextBoxStyle}">
 <Setter Property="IsReadOnly" Value="True" />
 <Setter Property="Cursor" Value="Arrow" />
</Style>

Here, we define a simple style for the textboxes in our application. We name it
TextBoxStyle and then reference it in the BasedOn property of the second style. This
means that all of the property setters and triggers declared in the first style will also apply
to the bottom style. In the second style, we add a few further setters to make the applied
textbox read-only.

One last point to note is that if we wanted to base a style on the default style of a control,
we can use the value that we normally enter into the TargetType property as the key to
identify the style that we want to base the new style on:

<Style x:Key="ExtendedTextBoxStyle" TargetType="{x:Type TextBox}"
 BasedOn="{StaticResource {x:Type TextBox}}">
 ...
</Style>

Let's now move on to take a deeper look into resources.

Using the Right Controls for the Job Chapter 5

[225]

Being resourceful
Styles are most often declared in the various Resources dictionaries of the application,
along with various templates, application colors, and brushes. The Resources property is
of type ResourceDictionary and declared in the FrameworkElement class and so
virtually all UI elements inherit it and can therefore host our styles and other resources.

Although the Resources property is of type ResourceDictionary, we do not need to
explicitly declare this element:

<Application.Resources>
 <ResourceDictionary>
 <!-- Add resources here -->
 </ResourceDictionary>
</Application.Resources>

While there are some occasions when we do need to explicitly declare the
ResourceDictionary, it will be implicitly declared for us if we do not:

<Application.Resources>
 <!-- Add Resources here -->
</Application.Resources>

Every resource in each collection must have a key that uniquely identifies them. We use the
x:Key directive to explicitly set this key, however, it can also be set implicitly as well.
When we declare styles in any Resources section, we can specify the TargetType value
alone, without setting the x:Key directive, in which case the style will be implicitly applied
to all elements of the correct type that are in the scope of the style:

<Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Green" />
 <Setter Property="Background" Value="White" />
 </Style>
</Resources>

In this case, the value for the x:Key directive is implicitly set to {x:Type Button}.
Alternatively, we can set the x:Key directive explicitly, so that the style must also be
applied explicitly:

<Resources>
 <Style x:Key="ButtonStyle">
 <Setter Property="Button.Foreground" Value="Green" />
 <Setter Property="Button.Background" Value="White" />
 </Style>
</Resources>

Using the Right Controls for the Job Chapter 5

[226]

...
<Button Style="{StaticResource ButtonStyle}" Content="Go" />

Styles can have both values set as well, as shown in the following code:

<Resources>
 <Style x:Key="ButtonStyle" TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Green" />
 <Setter Property="Background" Value="White" />
 </Style>
</Resources>

But a compilation error will be thrown if neither value is set:

<Resources>
 <Style>
 <Setter Property="Foreground" Value="Green" />
 <Setter Property="Background" Value="White" />
 </Style>
</Resources>

The preceding XAML would result in the following compilation error:

The member "Foreground" is not recognized or is not accessible.
The member "Background" is not recognized or is not accessible.

When a StaticResource with a specific key is requested, the lookup process first looks in
the local control; if it has a style and that style has a resource dictionary, it checks that first;
if there is no item with a matching key, it next looks in the resource collection of the control
itself.

If there is still no match, the lookup process checks the resource dictionaries of each
successive parent control until it reaches the MainWindow.xaml file. If it still does not find
a match, then it will look in the application Resources section in the App.xaml file.

StaticResource lookups occur once upon initialization and will suit our requirements for
most of the time. When using a StaticResource to reference one resource that is to be
used within another resource, the resource being used must be declared beforehand. That is
to say that a StaticResource lookup from one resource cannot reference another resource
that is declared after it in the resource dictionary:

<Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="{StaticResource RedBrush}" />
</Style>
<SolidColorBrush x:Key="RedBrush" Color="Red" />

Using the Right Controls for the Job Chapter 5

[227]

The preceding XAML would result in the following error:

The resource "RedBrush" could not be resolved.

Simply moving the declaration of the brush before the style would clear this error and get
the application running again. However, there are certain situations when using a
StaticResource to reference a resource isn't suitable. For example, we might need our
styles to update during runtime in response to some programmatic or user interaction, such
as a changing of the computer theme.

In these cases, we can use a DynamicResource to reference our resources and can rest
assured that our styles will update when the relevant resources are changed. Note that the
resource value is not looked up until it is actually requested, so this is perfect for resources
that will not be ready until after the application starts. Note the following altered example:

<Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="{DynamicResource RedBrush}" />
</Style>
<SolidColorBrush x:Key="RedBrush" Color="Red" />

In this case, there will be no compilation error, as the DynamicResource will retrieve the
value whenever it is set. While it's great to have this ability, it's important not to abuse it, as
using the DynamicResource will negatively affect performance. This is because they
repeatedly lookup the value each time it is requested, whether the values have changed or
not. For this reason, we should only ever use a DynamicResource if we really need to.

One final point about resource styles to mention here relates to scope. While this topic has
been mentioned elsewhere in this book, it is outlined again here as it is essential to
understand the resource lookup procedure. Application resources that are declared in the
App.xaml file are available application-wide, so this is a great place to declare our common
styles.

However, this is one of the furthest removed places that we can declare our styles, ignoring
external resource dictionaries and theme styles. In general, the rule is that given a resource
identifier conflict, the most local resources override those that are declared further away.
Therefore, we can define our default styles in the application resources but retain the ability
to override them locally.

Conversely, locally declared styles without an x:Key directive will be implicitly applied
locally, but will not be applied to elements of the relevant type that are declared externally.
We can, therefore, declare implicit styles in the Resources section of a panel for example
and they will only be applied to elements of the relative type within the panel.

Using the Right Controls for the Job Chapter 5

[228]

Merging resources
If we have a large application and our application resources are becoming overcrowded, we
have the option of splitting our default colors, brushes, styles, templates, and other
resources into different files. In addition to organizational and maintenance benefits, this
also enables our main resource files to be shared amongst our other applications, and so
this promotes reusability too.

In order to do this, we first need one or more additional resource files. We can add an
additional resource file using Visual Studio, by right-clicking on the relevant project and
selecting the Add option and then the Resource Dictionary... option. Upon executing this
command, we will be provided with a file like this:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
</ResourceDictionary>

This is one of the occasions when we do need to explicitly declare the
ResourceDictionary element. Once we have transferred our styles or other resources to
this file, we can merge it into our main application resources file like this:

<Application.Resources>
 <ResourceDictionary>
 <!-- Add Resources here... -->
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Default Styles.xaml" />
 <ResourceDictionary Source="Default Templates.xaml" />
 </ResourceDictionary.MergedDictionaries>
 <!-- ... or add resources here, but not in both locations -->
 </ResourceDictionary>
</Application.Resources>

Note that we do not specify the x:Key directive for this resource dictionary. In fact, if we
did specify this value on the dictionary, we would receive a compilation error:

The "Key" attribute can only be used on an element that is contained in
"IDictionary".

Note also that we can set the ResourceDictionary.MergedDictionaries value either
above or below our locally declared resources, but not anywhere in the middle of them.
Within this property, we can declare another ResourceDictionary element for each
external resource file that we want to merge and specify its location using a Uniform
Resource Identifier (URI) in the Source property.

Using the Right Controls for the Job Chapter 5

[229]

If our external resource files reside in our startup project with our App.xaml file, we can
reference them with relative paths, as shown in the preceding example. Otherwise, we will
need to use the Pack URI notation. To reference a resource file from a referenced assembly,
we would need to use the following format:

pack://application:,,,/ReferencedAssembly;component/ResourceFile.xaml

In our case, assuming that we had some resource files in a folder named Styles in a
separate project, or other referenced assembly, we would merge the file using the following
path:

<ResourceDictionary
 Source="pack://application:,,,/CompanyName.ApplicationName.Resources;
 component/Styles/Control Styles.xaml" />

When merging resource files, it is important to understand how naming conflicts will be
resolved. Although the x:Key directives that we set on our resources must each be unique
within their declared resource dictionary, it is perfectly legal to have duplicated key values
within separate resource files. As such, there is an order of priority that will be followed in
these cases. Let's see an example.

Imagine that we have the aforementioned referenced resource file in a separate project and
in that file, we have this resource:

<SolidColorBrush x:Key="Brush" Color="Red" />

Note that we would need to add a reference to the System.Xaml assembly in that project in
order to avoid errors. Now imagine that we also have the locally declared Default
Styles.xaml resource file that was referenced in the previous example and in that file, we
have this resource:

<SolidColorBrush x:Key="Brush" Color="Blue" />

Let's add a Default Styles 2.xaml resource file with this resource in it:

<SolidColorBrush x:Key="Brush" Color="Orange" />

Now, let's say that we merge all of these resource files and add this additional resource in
our application resource file:

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Default Styles.xaml" />
 <ResourceDictionary Source="Default Styles 2.xaml" />
 <ResourceDictionary Source="pack://application:,,,/

Using the Right Controls for the Job Chapter 5

[230]

 CompanyName.ApplicationName.Resources;
 component/Styles/Control Styles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 <SolidColorBrush x:Key="Brush" Color="Green" />
 ...
 </ResourceDictionary>
</Application.Resources>

Finally, let's imagine that we have this in the XAML of one of our Views:

<Button Content="Go">
 <Button.Resources>
 <SolidColorBrush x:Key="Brush" Color="Cyan" />
 </Button.Resources>
 <Button.Style>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="{StaticResource Brush}" />
 </Style>
 </Button.Style>
 </Button>

Also, let's assume that we have this in the local resources of that file:

<UserControl.Resources>
 <SolidColorBrush x:Key="Brush" Color="Purple" />
</UserControl.Resources>

When running the application, our button text will be cyan, because the main rule of
resource scope is that the highest priority resource that will be used will always be the most
locally declared resource. If we removed or commented out the local brush declaration, the
button text would then become purple when the application was next run.

If we removed the local purple brush resource from the control's Resources section, the
application resources would be searched next in an attempt to resolve the Brush resource
key. The next general rule is that the latest declared resource will be resolved. In this way,
the button text would then become green, because of the locally declared resource in the
App.xaml file, which would override the values from the merged dictionaries.

However, if this green brush resource was removed, an interesting thing would happen.
Given the recently stated rules, we might expect that the button text would then be set to
red by the Control Styles.xaml resource file from the referenced assembly. Instead, it
will be set to orange by the resource in the Default Styles 2.xaml file.

Using the Right Controls for the Job Chapter 5

[231]

This is the result of a combination of the two rules together. The two locally declared
resource files have a higher priority than the resource file from the referenced assembly
because they have been declared more locally than it. The second of the two locally
declared resource files takes precedence over the first because it was declared after the first.

If we removed the reference to the second of the locally declared resource files, the text
would then be set to blue by the resource in the Default Styles.xaml file. If we then
removed the reference to this file, we would finally see the red button text that would be set
by the Control Styles.xaml file from the referenced assembly.

Triggering changes
In WPF, we have a number of Trigger classes that enable us to modify controls, albeit
most commonly, just temporarily. All of them extend the TriggerBase base class and
therefore inherit its EnterActions and ExitActions properties. These two properties
enable us to specify one or more TriggerAction objects to apply when the trigger
becomes active and/or inactive respectively.

While most trigger types also contain a Setters property that we can use to define one or
more property setters that should occur when a certain condition is met, the
EventTrigger class does not. Instead, it provides an Actions property that enables us to
set one or more TriggerAction objects to be applied when the trigger becomes active.

Furthermore, unlike the other triggers, the EventTrigger class has no concept of state
termination. This means that the action applied by the EventTrigger will not be undone
when the triggering condition is no longer true. If you hadn't already guessed this, the
conditions that trigger the EventTrigger instances are events, or RoutedEvent objects
more specifically. Let's investigate this type of trigger first with a simple example that we
saw in the Chapter 4, Becoming Proficient with Data Binding:

<Rectangle Width="300" Height="300" Fill="Orange">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard Storyboard.TargetProperty="Width">
 <DoubleAnimation Duration="0:0:1" To="50" AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
</Rectangle>

Using the Right Controls for the Job Chapter 5

[232]

In this example, the trigger condition is met when the FrameworkElement.Loaded event
is raised. The action that is applied is the start of the declared animation. Note that the
BeginStoryboard class actually extends the TriggerAction class and this explains how
we are able to declare it within the trigger. This action will be implicitly added into the
TriggerActionCollection of the EventTrigger object, although we could have
explicitly set it as follows:

<EventTrigger RoutedEvent="Loaded">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard Storyboard.TargetProperty="Width">
 <DoubleAnimation Duration="0:0:1" To="50" AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
</EventTrigger>

In addition to the EventTrigger class, there are also Trigger, DataTrigger,
MultiTrigger and MultiDataTrigger classes that enable us to set properties or control
animations when a certain condition, or multiple conditions in the case of the multi
triggers, are met. Each has its own merits, but apart from the EventTrigger class, which
can be used in any trigger collection, there are some restrictions on where we can use them.

Each control that extends the FrameworkElement class has a Triggers property of type
TriggerCollection, that enable us to specify our triggers. However, if you've ever tried
to declare a trigger there, then you're probably aware that we are only allowed to define
triggers of type EventTrigger there.

However, there are further trigger collections that we can use to declare our other types of
triggers. When defining a ControlTemplate, we have access to the
ControlTemplate.Triggers collection. For all other requirements, we can declare our
other triggers in the Style.Triggers collection. Remember that triggers defined in styles
have a higher priority than those declared in templates.

Let's now take a look at the remaining types of triggers and what they can do for us. We
start with the most simple, the Trigger class. Note that anything that the property trigger
can do, the DataTrigger class can also do. However, the property trigger syntax is simpler
and does not involve data binding and so it is more efficient.

Using the Right Controls for the Job Chapter 5

[233]

There are, however, a few requirements to using a property trigger and they are as follows.
The relevant property must be a Dependency Property. Unlike the EventTrigger class,
the other triggers do not specify actions to be applied when the trigger condition is met, but
property setters instead.

We are able to specify one or more Setter objects within each Trigger object and they
will also be implicitly added to the trigger's Setters property collection if we do not
explicitly specify it. Note that also unlike the EventTrigger class, all other triggers will
return the original property value when the trigger condition is no longer satisfied. Let's
look at a simple example:

<Button Content="Go">
 <Button.Style>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Black" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Foreground" Value="Red" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </Button.Style>
</Button>

Here we have a button that will change the color of its text when the user mouse s over it.
Unlike the EventTrigger however, its text color will return to its previously set color
when the mouse is no longer over the button. Note also that property triggers use the
properties of the controls that they are declared in for their conditions, as they have no way
of specifying any other target.

As previously mentioned, the DataTrigger class can also perform this same binding. Let's
see what that might look like:

<Button Content="Go">
 <Button.Style>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Black" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding IsMouseOver,
 RelativeSource={RelativeSource Self}}" Value="True">
 <Setter Property="Foreground" Value="Red" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </Button.Style>
</Button>

Using the Right Controls for the Job Chapter 5

[234]

As you can see, when using a DataTrigger, instead of setting the Property property of
the Trigger class, we need to set the Binding property instead. In order to achieve the
same functionality as the property trigger, we also need to specify the
RelativeSource.Self enumeration member to set the binding source to the control that
is declaring the trigger.

The general rule of thumb is that when we are able to use a simple property trigger that
uses a property of the host control in its condition, we should use the Trigger class. When
we need to use a property of another control, or a data object in our trigger condition, we
should use a DataTrigger. Let's look at an interesting practical example now:

<Style x:Key="TextBoxStyle" TargetType="{x:Type TextBox}">
 <Style.Triggers>
 <DataTrigger Binding="{Binding DataContext.IsEditable,
 RelativeSource={RelativeSource AncestorType={x:Type UserControl}},
 FallbackValue=True}" Value="False">
 <Setter Property="IsReadOnly" Value="True" />
 </DataTrigger>
 </Style.Triggers>
</Style>

In this style, we added a DataTrigger element that data binds to an IsEditable property
that we could declare in a View Model class, that would determine whether the users could
edit the data in the controls on screen or not. This would assume that an instance of the
View Model was correctly set as the UserControl.DataContext property.

If the value of the IsEditable property was false, then the TextBox.IsReadOnly
property would be set to true and the control would become un-editable. Using this
technique, we could make all of the controls in a form editable or un-editable by setting this
property from the View Model.

The triggers that we have looked at so far have all used a single condition to trigger their
actions or property changes. However, there are occasionally situations when we might
need more than a single condition to trigger our property changes. For example, in one
situation, we might want one particular style, and in another situation, we might want a
different look. Let's see an example:

<Style x:Key="ButtonStyle" TargetType="{x:Type Button}">
 <Setter Property="Foreground" Value="Black" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Foreground" Value="Red" />
 </Trigger>
 <MultiTrigger>
 <MultiTrigger.Conditions>

Using the Right Controls for the Job Chapter 5

[235]

 <Condition Property="IsFocused" Value="True" />
 <Condition Property="IsMouseOver" Value="True" />
 </MultiTrigger.Conditions>
 <Setter Property="Foreground" Value="Green" />
 </MultiTrigger>
 </Style.Triggers>
</Style>

In this example, we have two triggers. The first will change the button text to red when the
mouse is over it. The second will change the button text to green if the mouse is over it and
the button is focused.

Note that we had to declare the two triggers in this order, as triggers are applied from top
to bottom. Had we swapped their order, then the text would never change to green because
the single trigger would always override the value set by the first one.

We can specify as many Condition elements as we need within the Conditions collection
and as many setters as we need within the MultiTrigger element itself. However, every
condition must return true in order for the setters or other trigger actions to be applied.

The same can be said for the last trigger type to be introduced here, the
MultiDataTrigger. The difference between this trigger and the previous one is the same
as that between the property trigger and the data trigger. That is, the data and multi-data
triggers have a much wider range of target sources, while triggers and multi triggers only
work with properties of the local control:

<StackPanel>
 <CheckBox Name="ShowErrors" Content="Show Errors" Margin="0,0,0,10" />
 <TextBlock>
 <TextBlock.Style>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="Text" Value="No Errors" />
 <Style.Triggers>
 <MultiDataTrigger>
 <MultiDataTrigger.Conditions>
 <Condition Binding="{Binding IsValid}" Value="False" />
 <Condition Binding="{Binding IsChecked,
 ElementName=ShowErrors}" Value="True" />
 </MultiDataTrigger.Conditions>
 <MultiDataTrigger.Setters>
 <Setter Property="Text" Value="{Binding ErrorList}" />
 </MultiDataTrigger.Setters>
 </MultiDataTrigger>
 </Style.Triggers>
 </Style>
 </TextBlock.Style>

Using the Right Controls for the Job Chapter 5

[236]

 </TextBlock>
 ...
</StackPanel>

This example demonstrates the wider reach of the MultiDataTrigger class, due to its
access to the wide range of binding sources. We have a Show Errors checkbox, a No
Errors textblock, and let's say, some other form fields that are not displayed here. One of
the conditions of this trigger uses the ElementName property to set the binding source to
the checkbox and requires it to be checked.

The other condition binds to an IsValid property from our View Model that would be set
to true if there were no validation errors. The idea is that when the checkbox is checked
and there are validation errors, the Text property of the TextBlock element will be data
bound to another View Model property named ErrorList, which could output a
description of the validation errors.

Also note that in this example, we explicitly declared the Setters collection property and
defined our setter within it. However, that is optional and we could have implicitly added
the setter to the same collection without declaring the collection, as shown in the previous
MultiTrigger example.

Before moving onto the next topic, let's take a moment to investigate the EnterActions
and ExitActions properties of the TriggerBase class that enable us to specify one or
more TriggerAction objects to apply when the trigger becomes active and/or inactive
respectively.

Note that we cannot specify style setters in these collections, as they are not
TriggerAction objects; setters can be added to the Setters collection. Instead, we use
these properties to start animations when the trigger becomes active and/or inactive. To do
that, we need to add a BeginStoryboard element, which extends the TriggerAction
class. Let's see an example:

<TextBox Width="200" Height="28">
 <TextBox.Style>
 <Style TargetType="{x:Type TextBox}">
 <Setter Property="Opacity" Value="0.25" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard Storyboard.TargetProperty="Opacity">
 <DoubleAnimation Duration="0:0:0.25" To="1.0" />
 </Storyboard>
 </BeginStoryboard>

Using the Right Controls for the Job Chapter 5

[237]

 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <BeginStoryboard>
 <Storyboard Storyboard.TargetProperty="Opacity">
 <DoubleAnimation Duration="0:0:0.25" To="0.25" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.ExitActions>
 </Trigger>
 </Style.Triggers>
 </Style>
 </TextBox.Style>
</TextBox>

In this example, the Trigger condition relates to the IsMouseOver property of the
TextBox control. Note that declaring our animations in the EnterActions and
ExitActions properties when using the IsMouseOver property is effectively the same as
having two EventTrigger elements, one for the MouseEnter event and one for
MouseLeave event.

In this example, the animation in the EnterActions collection will start as the user's
mouse cursor enters the control and the animation in the ExitActions collection will start
as the user's mouse cursor leaves the control.

We'll thoroughly cover animations later, in Chapter 7, Mastering Practical Animations, but in
short, the animation that starts as the user's mouse cursor enters the control will fade in the
control from being almost transparent to being opaque.

The other animation will return the TextBox control to an almost transparent state when
the user's mouse cursor leaves the control. This creates a nice effect when a mouse is
dragged over a number of controls with this style. Now that we have a good understanding
of triggers, let's move on to find other ways of customizing the standard .NET controls.

Templating controls
While we can greatly vary the look of each control using styles alone, there are occasionally
situations when we need to alter their template to achieve our goal. For example, there is no
direct way to change the background color of a button through styles alone. In these
situations, we need to alter the control's default template.

Using the Right Controls for the Job Chapter 5

[238]

All UI elements that extend the Control class provide access to its Template property.
This property is of type ControlTemplate and enables us to completely replace the
originally declared template that defines the normal look of the control. We saw a simple
example in the Chapter 4, Becoming Proficient with Data Binding, but let's now have a look at
another example:

<Button Content="Go" Width="100" HorizontalAlignment="Center">
 <Button.Template>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Fill="Orange" Stroke="Black" StrokeThickness="3"
 Height="{Binding ActualWidth,
 RelativeSource={RelativeSource Self}}" />
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" TextElement.FontSize="18"
 TextElement.FontWeight="Bold" />
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

Here, we have a button that we have altered to look like a circle. It is very basic, as we have
not bothered to define any mouseover or click effects, but it shows that there is nothing
scary about overriding the default template of a control and that it is simple to achieve:

Note that the ContentPresenter element is declared after the Ellipse element because
the ellipse is not a content control and cannot have another element set as its content. This
results in the content being drawn on top of the ellipse. A side effect of this is that we
therefore need to add a panel inside the template, to enable us to provide more than a
single piece of content.

Using the Right Controls for the Job Chapter 5

[239]

Also note that as with styles, we need to specify the TargetType property of the template.
To clarify this a little, we need to specify it if we want to data bind to any properties of the
control, or if the template contains a ContentPresenter element. Omitting this
declaration will not raise a compilation error in the latter case, but the content will simply
not appear in our templated control. It is therefore good practice to always set this property
to the appropriate type.

However, unlike styles, if we declared a ControlTemplate and set its TargetType
property in a Resources collection without specifying the x:Key directive, it would not be
implicitly applied to all buttons in the application. In this case, we would receive a
compilation error:

Each dictionary entry must have an associated key.

Instead, we need to set the x:Key directive and explicitly apply the template to the
Template property of the control. If we want our template to be applied to every control of
that type then we need to set it in the default style for that type. In this case, we need to not
set the x:Key directive of the style, so that it will be implicitly applied:

<ControlTemplate x:Key="ButtonTemplate" TargetType="{x:Type Button}">
 ...
</ControlTemplate>
<Style TargetType="{x:Type Button}">
 <Setter Property="Template" Value="{StaticResource ButtonTemplate}" />
</Style>

Note that we would not typically hard code property values as we did in this template
example, unless we did not want the users of our framework to be able to set their own
colors on our templated controls. More often than not, we would make proper use of the
TemplateBinding class to apply the values set from outside the control to the inner
controls defined within our template:

<Button Content="Go" Width="100" HorizontalAlignment="Center"
 Background="Orange" HorizontalContentAlignment="Center"
 VerticalContentAlignment="Center" FontSize="18">
 <Button.Template>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Fill="{TemplateBinding Background}"
 Stroke="{TemplateBinding Foreground}" StrokeThickness="3"
 Height="{Binding ActualWidth,
 RelativeSource={RelativeSource Self}}" />
 <ContentPresenter HorizontalAlignment="{TemplateBinding
 HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding

Using the Right Controls for the Job Chapter 5

[240]

 VerticalContentAlignment}"
 TextElement.FontWeight="{TemplateBinding FontWeight}"
 TextElement.FontSize="{TemplateBinding FontSize}" />
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

While this example is now far more verbose, it is also more practical and would enable
users to set their own button properties. Setting this template in a default style would make
the templated control far more reusable. Note that now, the hard coded values are made on
the button control itself, with the exception of the StrokeThickness property.

There is no suitable property on the Button class that we could use to expose this inner
control property. If this was a problem for us, we could expose the value of that property in
a custom Attached Property and data bind to it on the button as follows:

<Button Attached:ButtonProperties.StrokeThickness="3" ... />

And we could do the following inside the control template:

<Ellipse StrokeThickness=
 "{Binding (Attached:ButtonProperties.StrokeThickness)}" ... />

However, even though we have improved our template, there are certain elements defined
in the default templates that affect the way their containing controls look or work. If we
remove these elements, as we have done in the preceding example, we will break that
default functionality. For example, our example button no longer has focusing or
interaction effects.

Sometimes, we may only need to slightly adjust the original template, in which case, we
would typically start with the default ControlTemplate and then make our slight
adjustment to it. If we had done this with our button example and simply replaced the
visual aspects, then we could have retained the original interactivity with it.

In days gone by, it could be quite difficult to find the default control templates for the
various controls. We would previously need to try and track them down on the
docs.microsoft.com website, or use Blend; now, however, we can use Visual Studio to
provide it for us.

In the WPF designer, select the relevant control, or click on it with the mouse in a XAML
file. With the relevant control selected or focused, press the F4 key on your keyboard to
open the Properties window. Next, open the Miscellaneous category to find the Template
property, or type Template in the search field at the top of the Properties window.

http://docs.microsoft.com

Using the Right Controls for the Job Chapter 5

[241]

Click on the little square to the right of the Template value field and select the Convert to
New Resource... item in the template options tooltip. In the popup dialog window that
appears, name the new ControlTemplate to be added and decide where you want it to be
defined:

Once you have entered the required details, click the OK button to create a copy of the
default template of your selected control in your desired location. As an example, let's take
a look at the default control template of the TextBox control:

<ControlTemplate TargetType="{x:Type TextBox}">
 <Border Name="border" BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{TemplateBinding Background}"
 SnapsToDevicePixels="True">
 <ScrollViewer Name="PART_ContentHost" Focusable="False"
 HorizontalScrollBarVisibility="Hidden"
 VerticalScrollBarVisibility="Hidden" />
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsEnabled" Value="False">
 <Setter Property="Opacity" TargetName="border" Value="0.56" />
 </Trigger>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="BorderBrush" TargetName="border"
 Value="#FF7EB4EA" />
 </Trigger>
 <Trigger Property="IsKeyboardFocused" Value="True">
 <Setter Property="BorderBrush" TargetName="border"
 Value="#FF569DE5" />
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

Using the Right Controls for the Job Chapter 5

[242]

As we can see, most of the properties set on the inner controls have been exposed to the
TextBox control through the use of the TemplateBinding class. At the end of the template
are the triggers that react to various states, such as focus, mouseover, and enabled states.

However, inside the Border element, we see a ScrollViewer named
PART_ContentHost. The fact that this is named with the PART_ prefix specifies that this
control is required within this template. All named parts of each UI element will be listed
on the [ControlType] Styles and Templates pages on docs.microsoft.com.

This named part control is required in the textbox because when the textbox is initialized, it
programmatically adds the TextBoxView and CaretElement objects into the
ScrollViewer object and these are the predominant elements that make up the textbox's
functionality.

These specially named elements also need to be registered within the declaring class and
we'll find out more about that later in the chapter as well. It is therefore important that we
include these named controls in our custom templates if we want to keep the existing
functionality.

Note that we will not receive any compilation errors or even trace warnings if we do not
include these named controls, and we are free to leave them out if we do not require their
relevant functionality. This following example, while hardly functional, it still perfectly
valid:

<TextBox Text="Hidden Text Box">
 <TextBox.Template>
 <ControlTemplate TargetType="{x:Type TextBox}">
 <ContentPresenter Content="{TemplateBinding Text}" />
 </ControlTemplate>
 </TextBox.Template>
</TextBox>

Although this TextBox control will indeed display the specified text value, it will have no
containing box like a normal TextBox element would. What will happen when this
template is rendered is that the ContentPresenter element will see a string and default
to displaying it in a TextBlock element.

Its Text property will still be data bound to the Text property of our TextBox control and
so, when focused, it will still behave like a normal TextBox element and enable us to enter
text. Of course, we won't see when it's focused because we didn't add any triggers to make
that happen, and there won't be a caret as the CaretElement object will no longer be
added.

http://www.docs.microsoft.com

Using the Right Controls for the Job Chapter 5

[243]

Instead, if we simply supply the required named control, even without anything else, we'll
still regain most of the original functionality:

<TextBox Name="Text" Text="Does this work?">
 <TextBox.Template>
 <ControlTemplate TargetType="{x:Type TextBox}">
 <ScrollViewer Margin="0" Name="PART_ContentHost" />
 </ControlTemplate>
 </TextBox.Template>
</TextBox>

Now, when we run our application, we have the caret and text cursor when the mouse is
over the TextBox control, and so we have regained more of the functionality, but not the
look. However usually, the best option is to keep as much of the original template as we
can and only change the parts that we really need to.

Attaching properties
When using WPF, we have one further tool at our disposal to enable us to manipulate the
built-in controls and avoid the need to create new ones. We are, of course, discussing
Attached Properties, so let's extend an example that we started looking at in Chapter
4, Becoming Proficient with Data Binding.

In order to create a button that will enable us to set a second tooltip message to display
when the control is disabled, we'll need to declare two Attached Properties. One will hold
the disabled tooltip message and the other will be the previously mentioned read-only
property that temporarily holds onto the original tooltip value. Let's look at our full
ButtonProperties class now:

using System.Windows;
using System.Windows.Controls;

namespace CompanyName.ApplicationName.Views.Attached
{
 public class ButtonProperties : DependencyObject
 {
 private static readonly DependencyPropertyKey
 originalToolTipPropertyKey =
 DependencyProperty.RegisterAttachedReadOnly("OriginalToolTip",
 typeof(string), typeof(ButtonProperties),
 new FrameworkPropertyMetadata(default(string)));

 public static readonly DependencyProperty OriginalToolTipProperty =
 originalToolTipPropertyKey.DependencyProperty;

Using the Right Controls for the Job Chapter 5

[244]

 public static string GetOriginalToolTip(
 DependencyObject dependencyObject)
 {
 return
 (string)dependencyObject.GetValue(OriginalToolTipProperty);
 }

 public static DependencyProperty DisabledToolTipProperty =
 DependencyProperty.RegisterAttached("DisabledToolTip",
 typeof(string), typeof(ButtonProperties),
 new UIPropertyMetadata(string.Empty, OnDisabledToolTipChanged));

 public static string GetDisabledToolTip(
 DependencyObject dependencyObject)
 {
 return (string)dependencyObject.GetValue(
 DisabledToolTipProperty);
 }

 public static void SetDisabledToolTip(
 DependencyObject dependencyObject, string value)
 {
 dependencyObject.SetValue(DisabledToolTipProperty, value);
 }

 private static void OnDisabledToolTipChanged(DependencyObject
 dependencyObject, DependencyPropertyChangedEventArgs e)
 {
 Button button = dependencyObject as Button;
 ToolTipService.SetShowOnDisabled(button, true);
 if (e.OldValue == null && e.NewValue != null)
 button.IsEnabledChanged += Button_IsEnabledChanged;
 else if (e.OldValue != null && e.NewValue == null)
 button.IsEnabledChanged -= Button_IsEnabledChanged;
 }

 private static void Button_IsEnabledChanged(object sender,
 DependencyPropertyChangedEventArgs e)
 {
 Button button = sender as Button;
 if (GetOriginalToolTip(button) == null)
 button.SetValue(originalToolTipPropertyKey,
 button.ToolTip.ToString());
 button.ToolTip = (bool)e.NewValue ?
 GetOriginalToolTip(button) : GetDisabledToolTip(button);
 }
 }
}

Using the Right Controls for the Job Chapter 5

[245]

As with all Attached Properties, we start with a class that extends the DependencyObject
class. In this class, we first declare the read-only originalToolTipPropertyKey field
using the RegisterAttachedReadOnly method and the OriginalToolTipProperty
property and its associated CLR getter.

Next, we use the RegisterAttached method to register the DisabledToolTip property
that will hold the value of the tooltip to be displayed when the control is disabled. We then
see its CLR getter and setter methods and its all-important PropertyChangedCallback
handling method.

In the OnDisabledToolTipChanged method, we first cast the dependencyObject input
parameter to its actual type of Button. We then use it to set the
ToolTipService.SetShowOnDisabled Attached Property to true, which is required
because we want the button's tooltip to be displayed when the button is disabled. The
default value is false, so our Attached Property would not work without this step.

Next, we determine whether we need to attach or detach the Button_IsEnabledChanged
event-handling method depending on the NewValue and OldValue property values of the
DependencyPropertyChangedEventArgs object. If the old value is null, then the
property has not been set before and we need to attach the handler; if the new value is
null, then we need to detach the handler.

In the Button_IsEnabledChanged event-handling method, we first cast the sender input
parameter to the Button type. We then use it to access the OriginalToolTip property
and if it is null, we set it with the current value from the control's normal ToolTip
property. Note that we need to pass the originalToolTipPropertyKey field into the
SetValue method, as it is a read-only property.

Finally, we utilize the e.NewValue property value to determine whether to set the original
tooltip or the disabled tooltip into the control's normal ToolTip property. Therefore, if the
control is enabled, the e.NewValue property value will be true and the original tooltip
will be returned; if the button is disabled, the disabled tooltip will be displayed. We could
use this Attached Property as follows:

<Button Content="Save" Attached:ButtonProperties.DisabledToolTip="You must
 correct validation errors before saving" ToolTip="Saves the user" />

As can be seen from this simple example, Attached Properties enable us to easily add new
functionality to the existing suite of UI controls. This again highlights how versatile WPF is
and demonstrates that we often have no need to create completely new controls.

Using the Right Controls for the Job Chapter 5

[246]

Combining controls
When we need to arrange a number of existing controls in a particular way, we typically
use a UserControl object. This is why we normally use this type of control to build our
Views. However, when we need to build a reusable control, such as an address control, we
tend to separate these from our Views, by declaring them in a Controls folder and
namespace within our Views project.

When declaring these reusable controls, it is customary to define Dependency Properties in
the code behind and as long as there is no business-related functionality in the control, it is
also OK to use the code behind to handle events. If the control is business-related, then we
can use a View Model as we do with normal Views. Let's take a look at an example of an
address control:

<UserControl x:Class=
 "CompanyName.ApplicationName.Views.Controls.AddressControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls=
 "clr-namespace:CompanyName.ApplicationName.Views.Controls">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" SharedSizeGroup="Label" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="House/Street" />
 <TextBox Grid.Column="1" Text="{Binding Address.HouseAndStreet,
 RelativeSource={RelativeSource
 AncestorType={x:Type Controls:AddressControl}}}" />
 <TextBlock Grid.Row="1" Text="Town" />
 <TextBox Grid.Row="1" Grid.Column="1"
 Text="{Binding Address.Town, RelativeSource={RelativeSource
 AncestorType={x:Type Controls:AddressControl}}}" />
 <TextBlock Grid.Row="2" Text="City" />
 <TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Address.City, RelativeSource={RelativeSource
 AncestorType={x:Type Controls:AddressControl}}}" />
 <TextBlock Grid.Row="3" Text="Post Code" />
 <TextBox Grid.Row="3" Grid.Column="1"

Using the Right Controls for the Job Chapter 5

[247]

 Text="{Binding Address.PostCode, RelativeSource={RelativeSource
 AncestorType={x:Type Controls:AddressControl}}}" />
 <TextBlock Grid.Row="4" Text="Country" />
 <TextBox Grid.Row="4" Grid.Column="1"
 Text="{Binding Address.Country, RelativeSource={RelativeSource
 AncestorType={x:Type Controls:AddressControl}}}" />
 </Grid>
</UserControl>

In this example, we declare this class within the Controls namespace and set up a XAML
namespace prefix for it. We then see the Grid panel that is used to layout the address
controls and notice that the SharedSizeGroup property is set on the ColumnDefinition
element that defines the label column. This will enable the column sizes within this control
to be shared with externally declared controls.

We then see all of the TextBlock and TextBox controls that are data bound to the control's
address fields. There's not much to note here except that the data bound properties are all
accessed through a RelativeSource binding to an Address Dependency Property that is
declared in the code behind file of the AddressControl.

Remember that it's fine to do this when using MVVM as long as we are not encapsulating
any business rules here. Our control merely enables the users to input or add address
information, which will be used by various Views and View Models. Let's see this property
now:

using System.Windows;
using System.Windows.Controls;
using CompanyName.ApplicationName.DataModels;

namespace CompanyName.ApplicationName.Views.Controls
{
 public partial class AddressControl : UserControl
 {
 public AddressControl()
 {
 InitializeComponent();
 }

 public static readonly DependencyProperty AddressProperty =
 DependencyProperty.Register(nameof(Address),
 typeof(Address), typeof(AddressControl),
 new PropertyMetadata(new Address()));

 public Address Address
 {
 get { return (Address)GetValue(AddressProperty); }

Using the Right Controls for the Job Chapter 5

[248]

 set { SetValue(AddressProperty, value); }
 }
 }
}

This is a very simple control with just one Dependency Property. We can see that the
Address property is of type Address, so let's have a quick look at that class next:

namespace CompanyName.ApplicationName.DataModels
{
 public class Address : BaseDataModel
 {
 private string houseAndStreet, town, city, postCode, country;

 public string HouseAndStreet
 {
 get { return houseAndStreet; }
 set { if (houseAndStreet != value) { houseAndStreet = value;
 NotifyPropertyChanged(); } }
 }

 public string Town
 {
 get { return town; }
 set { if (town != value) { town = value; NotifyPropertyChanged(); } }
 }

 public string City
 {
 get { return city; }
 set { if (city != value) { city = value; NotifyPropertyChanged(); } }
 }

 public string PostCode
 {
 get { return postCode; }
 set { if (postCode != value) { postCode = value;
 NotifyPropertyChanged(); } }
 }

 public string Country
 {
 get { return country; }
 set { if (country != value) { country = value;
 NotifyPropertyChanged(); } }
 }

 public override string ToString()

Using the Right Controls for the Job Chapter 5

[249]

 {
 return $"{HouseAndStreet}, {Town}, {City}, {PostCode}, {Country}";
 }
 }
}

Again, we have a very simple class that is primarily made up from the address related
properties. Note the use of the String Interpolation in the overridden ToString method to
output a useful display of the class contents. Now we've seen the control, let's take a look at
how we can use it in our application. We can edit a View that we saw earlier, so let's see the
updated UserView XAML now:

<Grid TextElement.FontSize="14" Grid.IsSharedSizeScope="True" Margin="10">
 <Grid.Resources>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="HorizontalAlignment" Value="Right" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0,0,5,5" />
 </Style>
 <Style TargetType="{x:Type TextBox}">
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0,0,0,5" />
 </Style>
 </Grid.Resources>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" SharedSizeGroup="Label" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="Name" />
 <TextBox Grid.Column="1" Text="{Binding User.Name}" />
 <TextBlock Grid.Row="1" Text="Age" />
 <TextBox Grid.Row="1" Grid.Column="1" Text="{Binding User.Age}" />
 <Controls:AddressControl Grid.Row="2" Grid.ColumnSpan="2"
 Address="{Binding User.Address}" />
</Grid>

In this example, we can see the use of the Grid.IsSharedSizeScope property on the
outermost Grid panel. Remember that the SharedSizeGroup property was set in the
AddressControl XAML, although without this setting on the outer Grid, it does nothing
by itself.

Using the Right Controls for the Job Chapter 5

[250]

Looking at the outer panel's column definitions, we can see that we have also set the
SharedSizeGroup property to the same value of Label on the left column so that the two
panels' columns will be aligned.

We can skip over the two styles that are declared in the panel's Resources section as in a
proper application, these would most likely reside in the application resources file. In the
remainder of the View, we simply have a couple of rows of user properties and
then AddressControl.

This code assumes that we have declared an Address property of type Address in our
User class and populated it with suitable values in the UserViewModel class. Note how we
data bind the Address property of the User class to the Address property of the control,
rather than setting the DataContext property. As the control's internal controls are data
bound using RelativeSource bindings, which specify their own binding source, they do
not require any DataContext to be set. In fact, doing so in this example would stop it from
working.

Creating custom controls
When using WPF, we can generally create the UI that we want using the many techniques
already discussed in this book. However, in the cases where we require a totally unique
control with both a custom drawn appearance and custom functionality, then we may need
to declare a custom control.

Developing custom controls is very different than creating UserControl elements and it
can take some time to master this. To start with, we will need to add a new project of type
WPF Custom Control Library to declare them in. Also, instead of having a XAML page and
a code behind file, we only have the code file. At this point, you may be wondering where
we define what our control should look like.

In fact, when defining a custom control, we declare our XAML in a separate file named
Generic.xaml, which is added by Visual Studio when we add our controls project. To
clarify, the XAML for all of the custom controls that we declare in this project will go into
this file. This does not relate to controls that extend the UserControl class and we should
not declare those in this project.

This Generic.xaml file gets added into a folder named Themes in the root directory of our
WPF Custom Control Library project, as this is where the Framework will look for the
default styles of our custom controls. As such, we must declare the UI design of our control
in a ControlTemplate and set it to the Template property in a style that targets the type
of our control in this file.

Using the Right Controls for the Job Chapter 5

[251]

The style must be applied to all instances of our control and so the style is defined with the
TargetType set, but without the x:Key directive. If you remember, this will ensure that it
is implicitly applied to all instances of our control that don't have an alternative template
explicitly applied.

A further difference is that we cannot directly reference any of the controls that are defined
within the style in the Generic.xaml file. If you recall, when we provided a new template
for the built-in controls, we were under no obligation to provide the same controls that
were originally used. Therefore, if we tried to access a control from our original template
that had been replaced, it would cause an error.

Instead, we generally need to access them by overriding the
FrameworkElement.OnApplyTemplate method, which is raised once a template has been
applied to an instance of our control. In this method, we should expect that our required
control(s) will be missing and ensure that no errors occur if that is the case.

Let's look at a simple example of a custom control that creates a meter that can be used to
monitor CPU activity, RAM usage, audio loudness, or any other regularly changing value.
We'll first need to create a new project of type WPF Custom Control Library and rename
the CustomControl1.cs class that Visual Studio adds for us to Meter.cs.

Note that we can only add a custom control to a project of this type and that when the
project is added, Visual Studio will also add our Themes folder and Generic.xaml file,
with a style for our control already declared inside it. Let's see the code in the Meter.cs
file:

using System;
using System.Windows;
using System.Windows.Controls;

namespace CompanyName.ApplicationName.CustomControls
{
 public class Meter : Control
 {
 static Meter()
 {
 DefaultStyleKeyProperty.OverrideMetadata(typeof(Meter),
 new FrameworkPropertyMetadata(typeof(Meter)));
 }

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(nameof(Value),
 typeof(double), typeof(Meter),
 new PropertyMetadata(0.0, OnValueChanged, CoerceValue));

Using the Right Controls for the Job Chapter 5

[252]

 private static object CoerceValue(DependencyObject dependencyObject,
 object value)
 {
 return Math.Min(Math.Max((double)value, 0.0), 1.0);
 }

 private static void OnValueChanged(DependencyObject dependencyObject,
 DependencyPropertyChangedEventArgs e)
 {
 Meter meter = (Meter)dependencyObject;
 meter.SetClipRect(meter);
 }

 public double Value
 {
 get { return (double)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

 public static readonly DependencyPropertyKey clipRectPropertyKey =
 DependencyProperty.RegisterReadOnly(nameof(ClipRect), typeof(Rect),
 typeof(Meter), new PropertyMetadata(new Rect()));

 public static readonly DependencyProperty ClipRectProperty =
 clipRectPropertyKey.DependencyProperty;

 public Rect ClipRect
 {
 get { return (Rect)GetValue(ClipRectProperty); }
 private set { SetValue(clipRectPropertyKey, value); }
 }

 public override void OnApplyTemplate()
 {
 SetClipRect(this);
 }

 private void SetClipRect(Meter meter)
 {
 double barSize = meter.Value * meter.Height;
 meter.ClipRect =
 new Rect(0, meter.Height - barSize, meter.Width, barSize);
 }
 }
}

Using the Right Controls for the Job Chapter 5

[253]

This is a relatively small class, with only two Dependency Properties and their associated
CLR property wrappers and callback handlers. Of particular note is the class's static
constructor and the use of the DefaultStyleKeyProperty.OverrideMetadata method.

This is also added by Visual Studio when adding the class and is required to override the
type-specific metadata of the DefaultStyleKey Dependency Property when we derive a
custom class from the FrameworkElement class.

Specifically, this key is used by the Framework to find the default theme style for our
control and so, by passing the type of our class into the OverrideMetadata method, we
are telling the Framework to look for a default style for this type in our Themes folder.

If you remember, the theme styles are the last place that the Framework will look for the
style of a specific type and declaring styles just about anywhere else in the application will
override the default styles defined here.

The first Dependency Property is the main Value property of the control and this is used to
determine the size of the visible meter bar. This property defines a default value of 0.0 and
attaches the CoerceValue and OnValueChanged callback handlers.

In the CoerceValue handling method, we ensure that the output value always remains
between 0.0 and 1.0, as that is the scale that we will be using. In the OnValueChanged
handler, we update the value of the other Dependency Property, ClipRect, dependent
upon the input value.

To do this, we first cast the dependencyObject input parameter to our Meter type and
then pass that instance to the SetClipRect method. In this method, we calculate the
relative size of the meter bar and define the Rect element for the ClipRect Dependency
Property accordingly.

Next, we see the CLR property wrapper for the Value Dependency Property and then the
declaration of the ClipRect Dependency Property. Note that we declare it using a
DependencyPropertyKey element, thus making it a read-only property, because it is only
for internal use and has no value in being exposed publicly. The actual ClipRect
Dependency Property comes from this key element.

After this, we see the CLR property wrapper for the ClipRect Dependency Property and
then we come to the aforementioned OnApplyTemplate method. In our case, the purpose
of overriding this method is because often, data bound values will be set before the
control's template has been applied and so we would not be able to correctly set the size of
the meter bar from those values.

Using the Right Controls for the Job Chapter 5

[254]

Therefore, when the template has been applied and the control has been arranged and
sized, we call the SetClipRect method in order to set the Rect element for the ClipRect
Dependency Property to the appropriate value. Before this point in time, the Height and
Weight properties of the meter instance will be double.NaN (where NaN is short for Not a
Number) and cannot be used to size the Rect element correctly.

When this method is called, we can rest assured that the Height and Weight properties of
the meter instance will have valid values. Note that had we needed to access any elements
from our template, we could have called the FrameworkTemplate.FindName method
from this method, on the ControlTemplate object that is specified by our control's
Template property.

If we had named a Rectangle element in our XAML PART_Rectangle, we could access it
from the OnApplyTemplate method like this:

Rectangle rectangle = Template.FindName("PART_Rectangle", this) as
Rectangle;
if (rectangle != null)
{
 // Do something with rectangle
}

Note that we always need to check for null, because the applied template may be a custom
template that does not contain the Rectangle element at all. Note also that when we
require the existence of a particular element in the template, we can decorate our custom
control class declaration with a TemplatePartAttribute, that specifies the details of the
required control:

[TemplatePart(Name = "PART_Rectangle", Type = typeof(Rectangle))]
public class Meter : Control
{
 ...
}

This will not enforce anything and will not raise any compilation errors if the named part is
not included in a custom template, but it will be used in documentation and by various
XAML tools. It helps users of our custom controls to find out which elements are required
when they provide custom templates.

Using the Right Controls for the Job Chapter 5

[255]

Now that we've seen the inner workings of this control, let's take a look at the XAML of the
default style of our control in the Generic.xaml file to see how the ClipRect property is
used:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:CustomControls=
 "clr-namespace:CompanyName.ApplicationName.CustomControls">
 <Style TargetType="{x:Type CustomControls:Meter}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type
 CustomControls:Meter}">
 <ControlTemplate.Resources>
 <LinearGradientBrush x:Key="ScaleColors"
 StartPoint="0,1" EndPoint="0,0">
 <GradientStop Color="LightGreen" />
 <GradientStop Color="Yellow" Offset="0.5" />
 <GradientStop Color="Orange" Offset="0.75" />
 <GradientStop Color="Red" Offset="1.0" />
 </LinearGradientBrush>
 </ControlTemplate.Resources>
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 SnapsToDevicePixels="True">
 <Border.ToolTip>
 <TextBlock Text="{Binding Value, StringFormat={}{0:P0}}" />
 </Border.ToolTip>
 <Rectangle Fill="{StaticResource ScaleColors}"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 SnapsToDevicePixels="True" Name="PART_Rectangle">
 <Rectangle.Clip>
 <RectangleGeometry Rect="{Binding ClipRect,
 RelativeSource={RelativeSource
 AncestorType={x:Type CustomControls:Meter}}}" />
 </Rectangle.Clip>
 </Rectangle>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

Using the Right Controls for the Job Chapter 5

[256]

When each custom control class is created in a WPF Custom Control Library project, Visual
Studio adds an almost empty default style that sets a basic ControlTemplate and targets
the type of the class into the Generic.xaml file. We just need to define our custom XAML
within this template.

We start by declaring the ScaleColors gradient brush resource within the template. Note
that the default value for the Offset property of a GradientStop element is 0 and so we
can omit the setting of this property if that is the value that we want it set to. Therefore,
when we see a declared GradientStop, like the one with the Color property set to
LightGreen, we know its Offset property is set to 0.

Our meter control is basically made up of a Border element that surrounds a Rectangle
element. We use TemplateBinding elements to data bind the Background, BorderBrush,
and BorderThickness properties of the Border element and set its
SnapsToDevicePixels property to True to avoid aliasing.

This enables users of the control to specify the border and background colors of the internal
Border element of the meter control from outside the control. We could just as easily have
exposed an additional brush property to replace the ScaleColors resource and enable
users to define their own meter scale brush.

Note that we couldn't use a TemplateBinding to data bind the Value property in the
ToolTip element. This is not because we don't have access to it through the template, but
because we need to use the Binding.StringFormat property and the P format specifier to
transform our double property value to a percentage value.

If you remember, a TemplateBinding is a lightweight binding and does not offer this
functionality. While it is beneficial to use it when we can, this example highlights the fact
that we cannot use it in every circumstance.

Finally, we come to the all-important Rectangle element that is responsible for displaying
the actual meter bar of our control. The ScaleColors brush resource is used here to paint
the background of the rectangle. We set the SnapsToDevicePixels property to true on
this element to ensure that the level that it displays is accurate and well-defined.

The magic in this control is formed by the use of the UIElement.Clip property.
Essentially, this enables us to provide any type of Geometry element to alter the shape and
size of the visible portion of a UI element. The geometry shape that we assign here will
specify the visible portion of the control.

Using the Right Controls for the Job Chapter 5

[257]

In our case, we declare a RectangleGeometry class, whose size and location are specified
by its Rect property. We therefore data bind our ClipRect Dependency Property to this
Rect property, so that the sizes calculated from the incoming data values are represented
by this RectangleGeometry instance, and therefore the visible part of the Rectangle
element.

Note that we do this so that the gradient that is painted on the meter bar remains constant
and does not change with the height of the bar as its value changes. If we had simply
painted the background of the rectangle with the brush resource and adjusted its height,
the background gradient would move with the size of the meter bar and spoil the effect.

Therefore, the whole rectangle is always painted with the gradient brush and we simply
use its Clip property to just display the appropriate part of it. In order to use it in one of
our Views, we'd first need to specify the CustomControls XAML namespace prefix:

xmlns:CustomControls="clr-namespace:CompanyName.ApplicationName.
 CustomControls;assembly=CompanyName.ApplicationName.CustomControls"

We could then declare a number of them, data bind some appropriate properties to their
Value property, and set styles for them, just like any other control:

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <StackPanel.Resources>
 <Style TargetType="{x:Type CustomControls:Meter}">
 <Setter Property="Background" Value="Black" />
 <Setter Property="BorderBrush" Value="Black" />
 <Setter Property="BorderThickness" Value="2" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="Width" Value="20" />
 <Setter Property="Height" Value="100" />
 </Style>
 </StackPanel.Resources>
 <CustomControls:Meter Value="{Binding CpuActivity}" />
 <CustomControls:Meter Value="{Binding DiskActivity}" Margin="10,0" />
 <CustomControls:Meter Value="{Binding NetworkActivity}" />
</StackPanel>

Using the Right Controls for the Job Chapter 5

[258]

Given some valid properties to data bind to, the preceding example would produce an
output similar to the following:

Summary
In this chapter, we've investigated the rich inheritance hierarchy of the built-in WPF
controls, determining which abilities come from which base classes, and have seen how
each control is laid out by their containing panels. We've examined the differences between
the different panels and understand that some work better in certain conditions than others.

We've also uncovered the mysteries of the ContentControl and ItemsControl elements
and now have a good understanding of ContentPresenter and ItemsPresenter objects.
We moved on to discover a wide variety of ways for us to customize the built-in controls.
Finally, we considered how best to make our own controls.

In the next chapter, we will further investigate the built-in controls, paying particular
attention to the polymorphic ability of derived classes to override base class methods. We
will introduce a number of examples that each highlight certain problems, and demonstrate
how to overcome them each in turn by extending the built-in controls and overriding
particular base class methods.

6
Adapting the Built-In Controls

The .NET Framework comes with a plethora of built-in controls that cover most real-world
scenarios. And when we need something slightly different, we have seen that we can utilize
the WPF styling and/or templating systems to adapt them to our requirements. However,
there are also further ways of adjusting the built-in controls to suit our needs.

Each .NET control has a number of methods, each named with the prefix On, for
example, OnInitialized, or OnApplyTemplate. These are protected methods, that can be
overridden in any custom class that extends a .NET control. They are called at certain
points in the control's lifetime and enable us to change the default behavior of each control.

They enable us to do things as simple as starting a process as soon as a control has been
initialized, or accessing a named control from a custom ControlTemplate, once it has
been applied. But they can also be used to completely change the default behavior, or the
look and feel of the control. In this chapter, we will investigate these methods and give
examples of how they can be utilized to our advantage.

We will then examine further ways of customizing the built-in controls, by adjusting their
default ControlTemplate and leveraging new uses from them, while maintaining or
extending their existing functionality. In this chapter, we consider the built-in controls
merely as a starting point for our requirements, and learn how to build upon them, keeping
what we need and changing what we don't.

Inspecting protected methods
Each .NET control has several methods that enable developers that extend that control to
either interact with, or alter its functionality. Note that these are not events, but protected
methods, that are called at specific points throughout the control's lifetime. As we have
already seen in Chapter 5, Using the Right Controls for the Job, each .NET control extends a
number of base classes, with each providing certain additional functionality.

Adapting the Built-In Controls Chapter 6

[260]

In a similar way, each base class also provides a number of these protected methods, that
enable us to interact with the control internally. In this chapter, we will also show how we
can create our own methods that enable developers that extend our own control classes to
adapt or extend their functionality.

Let's first take a look at the protected methods of the Window class:

protected override Size ArrangeOverride(Size arrangeBounds);
protected override Size MeasureOverride(Size availableSize);
protected virtual void OnActivated(EventArgs e);
protected virtual void OnClosed(EventArgs e);
protected virtual void OnClosing(CancelEventArgs e);
protected override void OnContentChanged(object oldContent, object
newContent);
protected virtual void OnContentRendered(EventArgs e);
protected override AutomationPeer OnCreateAutomationPeer();
protected virtual void OnDeactivated(EventArgs e);
protected virtual void OnLocationChanged(EventArgs e);
protected override void
 OnManipulationBoundaryFeedback(ManipulationBoundaryFeedbackEventArgs
e);
protected virtual void OnSourceInitialized(EventArgs e);
protected virtual void OnStateChanged(EventArgs e);
protected internal sealed override void
 OnVisualParentChanged(DependencyObject oldParent);

You may notice that they are all marked with either the virtual or override keywords,
indicating that they can be overridden in extending classes. Apart from the
ArrangeOverride and MeasureOverride methods, that we discovered in Chapter 5,
Using the Right Controls for the Job, you should see that their names all start with the prefix
On. This signifies that they are called upon some action having taken place.

For example, the OnActivated method is called when the Window becomes the active
window on the computer, while the OnDeactivated method is called when the Window
loses focus. These methods are usually used together to pause and resume animations, or
other processes, while the Window is not in focus.

As expected, the OnClosed method is called upon the Window being closed and gives us a
chance to dispose of any resources, or to save user preferences before closing the
application. Conversely, The OnClosing method is called before the Window is closed and
gives us a chance to cancel the close operation.

Adapting the Built-In Controls Chapter 6

[261]

Therefore, the OnClosing method would be a good method from which to display a
dialog, asking the user to confirm the close operation. Let's take a quick look at how we
might achieve this in a class that extends the Window class:

using System.ComponentModel;
using System.Windows;

...

protected override void OnClosing(CancelEventArgs e)
{
 base.OnClosing(e);
 MessageBoxResult result = MessageBox.Show("Are you sure you want to
close?",
 "Close Confirmation", MessageBoxButton.OKCancel,
MessageBoxImage.Question);
 e.Cancel = result == MessageBoxResult.Cancel;
}

In this simple example, we override the OnClosing method and in it, we first call the base
class method, to ensure that any base class routines are run as expected. We then display a
message box to the user, asking them to confirm their close operation.

With the resulting value attained from the user via the message box buttons, we set the
Cancel property of the CancelEventArgs object that is passed into the method. If the
returned value is Cancel, the Cancel property is set to true and the close operation is
canceled, otherwise, it is set to false and the application is closed.

Returning to the Window class now, we see the OnLocationChanged method, which is
called whenever the Window is moved or resized in a manner that moves its top left corner.
We could use this method to save the last position of the Window, so that it could be
returned there the next time the user opened their application. However, this operation is
more typically performed upon the user closing the application.

The OnSourceInitialized method is called after the window source is created, but
before it is shown and the OnStateChanged method is called when the WindowState
property is changed. So you see, these methods provide us with opportunities to perform
actions at specific points throughout each control's lifetime.

Each base class adds its own collection of these protected methods for us to take advantage
of, and ones of interest are overridden in the extending classes. Looking at the Window class
declaration, we see that it extends the ContentControl class. Notice that its
OnContentChanged method is marked with the override keyword.

Adapting the Built-In Controls Chapter 6

[262]

This is because this method, which is actually declared in the ContentControl class, has
been overridden in the Window class so that it could add its own code after the base class
functionality has been executed. Let's have a look at the source code for this method from
the Window class. The comments in the source code have been removed for brevity:

protected override void OnContentChanged(object oldContent, object
newContent)
{
 base.OnContentChanged(oldContent, newContent);

 SetIWindowService();
 if (IsLoaded == true)
 {
 PostContentRendered();
 }
 else
 {
 if (_postContentRenderedFromLoadedHandler == false)
 {
 this.Loaded += new RoutedEventHandler(LoadedHandler);
 _postContentRenderedFromLoadedHandler = true;
 }
 }
}

The method starts by calling the base class version of the method, which is always a good
practice unless we want to stop the existing functionality from being performed. Next, it
calls the SetIWindowService method, which just sets the Window object to the
IWindowServiceProperty Dependency Property, and then it checks if the Window has
passed the loading stage or not.

If it has, then it calls the PostContentRendered method, which basically invokes the
OnContentRendered method using the Dispatcher object. Otherwise, if the
_postContentRenderedFromLoadedHandler variable is false, it attaches an event
handler to the Loaded event and sets the variable to true, to ensure that it is not attached
more than once.

Returning to our investigation now, we see that the Window class adds protected methods
relating to the Window and the ContentControl class adds protected methods relating to
the content of the control. Let's see the protected methods of the ContentControl class
now:

protected virtual void AddChild(object value);
protected virtual void AddText(string text);
protected virtual void OnContentChanged(object oldContent, object

Adapting the Built-In Controls Chapter 6

[263]

newContent);
protected virtual void OnContentStringFormatChanged(string
oldContentStringFormat, string newContentStringFormat);
protected virtual void OnContentTemplateChanged(DataTemplate
oldContentTemplate, DataTemplate newContentTemplate);
protected virtual void
OnContentTemplateSelectorChanged(DataTemplateSelector
oldContentTemplateSelector, DataTemplateSelector
newContentTemplateSelector);

Apart from the first two methods, which can be used to add a specified object or text string
to the ContentControl element, the remaining four methods are all called in response to a
change in the content, or the format of the content of the control.

Moving on now, the ContentControl class extends the Control class, which introduces
the concept of the ControlTemplate. As such, it provides a protected
OnTemplateChanged method, which is called when the ControlTemplate value is
changed:

protected override Size ArrangeOverride(Size arrangeBounds);
protected override Size MeasureOverride(Size constraint);
protected virtual void OnMouseDoubleClick(MouseButtonEventArgs e);
protected virtual void OnPreviewMouseDoubleClick(MouseButtonEventArgs e);
protected virtual void OnTemplateChanged(ControlTemplate oldTemplate,
ControlTemplate newTemplate);

The Control class extends the FrameworkElement class, which provides framework-level
methods and events. These include a mouse, keyboard, stylus, touch, and focus-related
protected methods, along with several others:

protected virtual Size ArrangeOverride(Size finalSize);
protected override Geometry GetLayoutClip(Size layoutSlotSize);
protected override Visual GetVisualChild(int index);
protected virtual Size MeasureOverride(Size availableSize);
protected virtual void OnContextMenuClosing(ContextMenuEventArgs e);
protected virtual void OnContextMenuOpening(ContextMenuEventArgs e);
protected override void OnGotFocus(RoutedEventArgs e);
protected virtual void OnInitialized(EventArgs e);
protected override void
OnPropertyChanged(DependencyPropertyChangedEventArgs e);
protected virtual void OnToolTipClosing(ToolTipEventArgs e);
protected virtual void OnToolTipOpening(ToolTipEventArgs e);

Adapting the Built-In Controls Chapter 6

[264]

Perhaps by now you will have noticed that many of these method names relate closely to
the names of events raised by each class. In fact, there is a .NET Framework programming
guideline for having protected virtual methods that raise events, to allow derived classes to
override the event invocation behavior and we'll see an example of this later in this chapter.

When overriding these methods, we are therefore required to call the base class method in
order to raise the corresponding event. When in doubt, it's usually best to call the base class
version of the method to ensure that default functionality is not lost. However, it's good
practice to view the base class method source code on the
www.referencesource.microsoft.com website, to check if we need to call it or not.

You may be wondering what the difference between handling the events and overriding
the related protected methods is and there are a few answers to this, depending upon the
method in question. The first thing to point out is that in order to override a protected
method, we need to declare a subclass of the class that declares the method.

So, assuming that we already have a class that extends a base class, what are the differences? For
some methods, such as the OnClosing method that we explored, there is little difference.
We could implement the same functionality in an event handler that is attached to the
Closing event, although without the call to the base class method. In fact, this is the only
real difference.

When overriding the OnClosing method, we are in control of when or if the base class
method is called. When handling the event, we have no control over this. So, if we need to
perform some action before the base class routine is executed or if we want to stop it from
executing, then we will need to override the OnClosing method.

So, the appearance of the OnClosing method is there, purely for convenience, for us to be
able to alter the default behavior of the Closing event. Other methods, however, such as
the OnContextMenuClosing method, introduce a way for us to perform class-wide
handling for the related events.

Sometimes though, we have no alternative to overriding these protected methods.
Typically, these types of methods do not start with the prefix On and do not relate to any
event. Occasionally, to perform a particular operation, we may need to extend a class, just
so that we can provide a new implementation for one of these methods.

Let's look at an example using the GetLayoutClip method from the FrameworkElement
class that we just saw.

http://www.referencesource.microsoft.com

Adapting the Built-In Controls Chapter 6

[265]

Clipping the layout
By default, the TextBlock class clips its textual content at its bounding rectangle, so that
text does not leak out of it. Clipping is the process of cutting off a portion of the visible
output of a control. But what about if we want the text to extend its bounds?

There is a property named Clip, that we typically use to adjust the visible portion of
controls. However, this can only reduce what is already visible. It cannot increase the
rendering space available to the control. Before we continue with our example, let's take a
short detour to investigate this property.

The Clip property, which is defined in the UIElement class, takes a Geometry object as its
value. The object that we pass it can be created from any of the classes that extend the
Geometry class, including the CombinedGeometry class. Therefore, the clipped object can
be made into any shape. Let's view a simple example:

<Rectangle Fill="Salmon" Width="150" Height="100" RadiusX="25"
RadiusY="50">
 <Rectangle.Clip>
 <EllipseGeometry Center="150,50" RadiusX="150" RadiusY="50" />
 </Rectangle.Clip>
</Rectangle>

Here, we use an EllipseGeometry object to make a Rectangle element appear as a small
bullet shape. It works by displaying all of the image pixels from the Rectangle element
that lies within the oval boundary of the EllipseGeometry object and hiding all those that
lie outside the boundary. Let's take a look at the visual output of this code:

Returning to our previous example, the TextBlock class also clips its content in a similar
way, but with a rectangle the size of the control, instead of an off-centered oval. Rather than
using the Clip property, which provides the user with the same ability to clip the control
as the other controls offer, it uses a protected method to ask for the Geometry object to use
in the clipping process.

Adapting the Built-In Controls Chapter 6

[266]

We could indeed return any geometric shape from this method, but it would not have the
same visual effect as passing the shape to the Clip property would. For our example, we
don't want to restrict the visible size of the control, but instead, remove the clipped area at
the bounds of the control.

If we knew exactly what size we wanted to set the clipped range at, we could return a
Geometry object of that size from the GetLayoutClip method. However, for our
purposes, and to enable any of our custom TextBlock objects to leak endless text out of
their bounds, we can simply return null from this method. Let's look at the difference
between the two.

First, we create our BoundlessTextBlock class by extending the TextBlock class.
Probably, one of the easiest ways to do this in Visual Studio is to add a WPF User Control
object into our Controls folder and then simply replace the word UserControl with the
word TextBlock in both the XAML file and its associated code behind file. Failure to
change both will result in a design-time error that complains that Partial declarations of
'BoundlessTextBlock' must not specify different base classes:

<TextBlock
x:Class="CompanyName.ApplicationName.Views.Controls.BoundlessTextBlock"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" />

As can be seen from this example, our XAML file can be left remarkably empty, and for our
requirements, we only need to override the single GetLayoutClip method in the code
behind file. In this first example, we will return an EllipseGeometry object with the same
size as the text block that will be used in the user interface:

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;

namespace CompanyName.ApplicationName.Views.Controls
{
 public partial class BoundlessTextBlock : TextBlock
 {
 public BoundlessTextBlock()
 {
 InitializeComponent();
 }

 protected override Geometry GetLayoutClip(Size layoutSlotSize)
 {
 return new EllipseGeometry(new Rect(new Size(150, 22)));
 }

Adapting the Built-In Controls Chapter 6

[267]

 }
}

Let's see how we can use our new class. First, we need to define a XAML Namespace that
maps to the CLR namespace where we saved the class. Next, for demonstration purposes,
we wrap our BoundlessTextBlock object in a Border object, so that we can see its natural
bounds:

xmlns:Controls="clr-namespace:CompanyName.ApplicationName.Views.Controls"
...

<Border BorderBrush="Black" BorderThickness="1"
HorizontalAlignment="Center"
 VerticalAlignment="Center" SnapsToDevicePixels="True">
 <Controls:BoundlessTextBlock Text="Can you see what has happened?"
 Background="Aqua" FontSize="14" Width="150" Height="22" />
</Border>

Let's take a look at the visual output from this example:

As you can see, the visual output from our BoundlessTextBlock object has been
restricted to display only the pixels that lie within the EllipseGeometry object that was
returned from the GetLayoutClip method. But what will happen if we return an
EllipseGeometry object that is larger than our custom text block? Let's find out, by returning
this object instead:

return new EllipseGeometry(new Rect(new Size(205, 22)));

Now, looking at the visual output of our BoundlessTextBlock object, we can see that the
content of our custom text block now extends beyond its bounds, thanks to the Border
object and the blue background:

Adapting the Built-In Controls Chapter 6

[268]

So, we can see that the clipping that is applied using the Geometry object that is returned
from the GetLayoutClip method is not only unaffected by the control's natural bounds,
but in fact, can directly alter them. Returning to our original idea on this subject, if we want
to totally remove the clipping at the control's bounding edges, we can simply return null
from this method instead:

protected override Geometry GetLayoutClip(Size layoutSlotSize)
{
 return null;
}

Let's see the result of this change now:

As you can see, the text now reaches right out of the boundary of the containing
TextBlock object, and continues until the end of the text value. Note that it would extend
as long as the text string requires, if given enough space by its parent control(s).

Let's look at another example of extending these classes to alter their functionality now.

Altering default behavior
The developers of the ItemsControl class gave it a particular default behavior. They
thought that any objects that extended the UIElement class would have their own UI
container and so, should be displayed directly, rather than allowing them to be templated
in the usual way.

There is a method named IsItemItsOwnContainer in the ItemsControl class, which is
called by the WPF Framework, to determine if an item in the Items collection is its own
item container or not. Let's first take a look at the source code of this method:

public bool IsItemItsOwnContainer(object item)
{
 return IsItemItsOwnContainerOverride(item);
}

Adapting the Built-In Controls Chapter 6

[269]

Note that internally, this method just calls the IsItemItsOwnContainerOverride
method, returning its value unchanged. Let's take a look at the source code of that method
now:

protected virtual bool IsItemItsOwnContainerOverride(object item)
{
 return (item is UIElement);
}

Here, we see two things: The first is the default implementation that was just mentioned,
where true is returned for all items that extend the UIElement class, and false for all
other types. The second is that this method is marked as virtual, so we are able to extend
this class and override the method to return a different value.

Let's now look at the crucial part of the ItemsControl class source code (without the
comments), where our overridden method would be used. This excerpt is from the
GetContainerForItem method:

DependencyObject container;

if (IsItemItsOwnContainerOverride(item))
 container = item as DependencyObject;
else
 container = GetContainerForItemOverride();

With the default implementation, we see that UIElement items are cast to the type of
DependencyObject, and set as the container, while a new container is created for items of
all other types. Before overriding this method, let's see what effect the default behavior has,
using an example.

The aim of this example is to render a little hollow circle for each item in a collection. Think
of a slide show, where these circles would represent the slides, or a page numbering or
linking system. We, therefore, need a collection control containing some items and a
DataTemplate, with which to define the circles. Let's see the collection control with the
items on their own first:

<UserControl
x:Class="CompanyName.ApplicationName.Views.ForcedContainerItemsControlView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="175" Width="287">
 <Grid>
 <Grid.Resources>
 <ItemsPanelTemplate x:Key="HorizontalPanelTemplate">
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>

Adapting the Built-In Controls Chapter 6

[270]

 <Style TargetType="{x:Type Rectangle}">
 <Setter Property="Width" Value="75" />
 <Setter Property="Height" Value="75" />
 <Setter Property="RadiusX" Value="15" />
 <Setter Property="RadiusY" Value="15" />
 </Style>
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <ListBox Name="ListBox" Height="105" Margin="20,20,20,0"
 ItemsPanel="{StaticResource HorizontalPanelTemplate}">
 <Rectangle Fill="Red" />
 <Rectangle Fill="Orange" />
 <Rectangle Fill="Green" />
 </ListBox>
 </Grid>
</UserControl>

We start with the resources, where we have declared an ItemsPanelTemplate, that is set
to an instance of a StackPanel, with its Orientation property set to Horizontal. This
will make the panel's items appear horizontally. We then added a basic Style, in which we
set our common properties for the Rectangle class.

In the markup, we have a Grid panel with two rows. In the first row, we have a ListBox
named ListBox, with three colored Rectangle objects declared within its Items
collection. Its ItemsPanel property is set to the ItemsPanelTemplate instance that we
declared in the control's Resources section. The second row is currently empty, but let's
see the visual output so far:

Adapting the Built-In Controls Chapter 6

[271]

So far, so good. We can see our three rounded rectangles in the ListBox control. Now, let's
add a DataTemplate into the Resources section and an ItemsControl element into the
second row of the Grid panel, declaring it directly underneath the ListBox XAML:

<DataTemplate x:Key="EllipseDataTemplate" DataType="{x:Type UIElement}">
 <Ellipse Width="16" Height="16"
 Stroke="Gray" StrokeThickness="2" Margin="4" />
</DataTemplate>

...

<ItemsControl Grid.Row="1" ItemsSource="{Binding Items,
ElementName=ListBox}"
 ItemsPanel="{StaticResource HorizontalPanelTemplate}"
 ItemTemplate="{StaticResource EllipseDataTemplate}"
 HorizontalAlignment="Center" />

Note that this ItemsControl element has its ItemsSource property data bound to the
Items property from the ListBox, using an ElementName binding. Like the ListBox
control, it also arranges its items horizontally, using the ItemsPanelTemplate resource. It
also applies the new DataTemplate element that we just added into the Resources
section.

In this DataTemplate, we define a hollow gray Ellipse element to be rendered for each
item in the collection, specifying its dimensions, spacing and stroke settings. Let's take a
look at the visual output of our example now:

Adapting the Built-In Controls Chapter 6

[272]

As you can see, we have some unexpected results. Instead of rendering the small gray
ellipses that we defined in the DataTemplate, the items in the ItemsControl display the
actual items from the ListBox. Even worse than that, as each UI element can only be
displayed in one location at any given point in time, the original items no longer even
appear in the ListBox.

You may see an ArgumentException being thrown regarding this issue:

Must disconnect the specified child from current parent Visual before
attaching to new parent Visual.

But why haven't these objects been rendered as hollow circles in the second ListBox, according to
our DataTemplate? Do you remember the IsItemItsOwnContainerOverride method that
we investigated? Well, that is the reason.

The objects that are data-bound to the ItemsControl's ItemsSource property extend the
UIElement class, and so the ItemsControl class uses them as their own containers, rather
than creating a new container and applying the item template to them.

So, how do we change this default behavior? That's right, we need to extend the ItemsControl
class and override the IsItemItsOwnContainerOverride method to always return
false. In this way, a new container will always be created and the item template will
always be applied. Let's see how this would look in a new class:

using System.Windows.Controls;

namespace CompanyName.ApplicationName.Views.Controls
{
 public class ForcedContainerItemsControl : ItemsControl
 {
 protected override bool IsItemItsOwnContainerOverride(object item)
 {
 return false;
 }
 }
}

Here we have the very simple ForcedContainerItemsControl class, with its single
overridden method, that always returns false. We need to do nothing else in this class, as
we are happy to use the default behavior of the ItemsControl class for everything else.

Adapting the Built-In Controls Chapter 6

[273]

All that remains is for us to use our new class in our example. We start by adding a XAML
Namespace for our Controls CLR Namespace:

xmlns:Controls="clr-namespace:CompanyName.ApplicationName.Views.Controls"

Next, we replace the ItemsControl XAML with the following:

<Controls:ForcedContainerItemsControl Grid.Row="1"
 ItemsSource="{Binding Items, ElementName=ListBox}"
 ItemsPanel="{StaticResource HorizontalPanelTemplate}"
 ItemTemplate="{StaticResource EllipseDataTemplate}"
 HorizontalAlignment="Center" Height="32" />

Let's see the new visual output now:

Now, we see what we were originally expecting to see: a little hollow circle rendered for
each item in the collection. The items in our custom ItemsControl have now all been
generated a new container and had our template applied to them as expected.

But what if we need to make use of the selected item in this example? The ItemsControl class
has no concept of a selected item, so in this case, we would need to use a ListBox control
in the second row of the Grid panel.

However, note that the ListBox class has also overridden the
IsItemItsOwnContainerOverride method, so that it does not suffer from this same
problem.

Adapting the Built-In Controls Chapter 6

[274]

In fact, it will only use an item as a container if it is actually the correct container for this
class; a ListBoxItem. Let's see its overridden method:

protected override bool IsItemItsOwnContainerOverride(object item)
{
 return (item is ListBoxItem);
}

Therefore, if we need access to the SelectedItem property from the ListBox class, then
we do not need to create our own extended class to override this method, and can instead
use their standard implementation. To get the same visual output however, we would need
some styles to hide the ListBox's border and selected item highlights. Let's see a basic
example of this:

<Style x:Key="HiddenListBoxItems" TargetType="{x:Type ListBoxItem}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBoxItem}">
 <ContentPresenter />
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>
<Style x:Key="HiddenListBox" TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}">
 <ScrollViewer>
 <ItemsPresenter SnapsToDevicePixels="{TemplateBinding
 SnapsToDevicePixels}" />
 </ScrollViewer>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

We would also need to update our EllipseDataTemplate template to include a trigger to
highlight the small Ellipse object when its related item is selected in the top ListBox
control:

<DataTemplate x:Key="EllipseDataTemplate" DataType="{x:Type UIElement}">
 <Ellipse Width="16" Height="16" Stroke="Gray" StrokeThickness="2"
 Margin="8">
 <Ellipse.Style>
 <Style TargetType="{x:Type Ellipse}">
 <Setter Property="Fill" Value="Transparent" />
 <Style.Triggers>

Adapting the Built-In Controls Chapter 6

[275]

 <DataTrigger Binding="{Binding IsSelected,
 RelativeSource={RelativeSource
 AncestorType={x:Type ListBoxItem}}}" Value="True">
 <Setter Property="Fill" Value="LightGray" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </Ellipse.Style>
 </Ellipse>
</DataTemplate>

And finally, we'll need to replace our ForcedContainerItemsControl element with a
standard ListBox and apply our styles to it and its containers:

<ListBox Grid.Row="1" ItemsSource="{Binding Items, ElementName=ListBox}"
 ItemsPanel="{StaticResource HorizontalPanelTemplate}"
 ItemTemplate="{StaticResource EllipseDataTemplate}"
 SelectedItem="{Binding SelectedItem, ElementName=ListBox}"
 Style="{StaticResource HiddenListBox}"
 ItemContainerStyle="{StaticResource HiddenListBoxItems}"
 HorizontalAlignment="Center" />

When we run the application now, we see that the small hollow Ellipse objects become
filled when their related item is selected in the top ListBox:

So, we've seen how we can override these protected methods to change the default
behavior of the built-in controls. Let's now take a look at how we can build these protected
methods into our own custom classes, so that they can affect the natural flow of a piece of
our control's functionality.

Adapting the Built-In Controls Chapter 6

[276]

Creating overridable methods
The first thing that we need to do is to define either an abstract or a virtual method in our
base class. Note that the class would need to be abstract in order to declare an abstract
method. Which one we chose will depend on if we want to leave the implementation up to
the developers that use our code, or if we have some implementation that we need to put in
the method ourselves.

Let's look at an example to clarify this. Here, we see a method from an abstract
BaseDragDropManager class. It handles the PreviewMouseMove event on controls that are
used as drag and drop sources, for example, on a ListBox from which an item is being
dragged:

private void DragSourcePreviewMouseMove(object sender, MouseEventArgs e)
{
 if (_isMouseDown && IsConfirmedDrag(e.GetPosition(sender as ListBox)))
 {
 _isMouseDown = false;
 OnDragSourcePreviewMouseMove(sender, e);
 if (e.Handled) return;
 OnDragStart(sender as UIElement);
 }
}

protected virtual void
 OnDragSourcePreviewMouseMove(object sender, MouseEventArgs e) { }

protected abstract void OnDragStart(UIElement uiElement);

In this example, the DragSourcePreviewMouseMove method first performs a check to
verify that a drag operation has been initiated by the user. It then calls the
OnDragSourcePreviewMouseMove method, which is marked as virtual, which makes
overriding it in derived classes optional.

The next line of the DragSourcePreviewMouseMove method checks the Handled property
of the MouseEventArgs input parameter and if it has been set to true in the derived class,
it returns execution to the caller, instead of continuing with the drag and drop operation. If
the event has not been handled, then the OnDragStart method is called.

This is the crucial bit that links the possible input from the derived classes. The only reason
to override the OnDragSourcePreviewMouseMove method in an extending class is to set
the Handled property of the MouseEventArgs input parameter to true and stop the drag
and drop operation from starting, perhaps according to some information that the
extending class has.

Adapting the Built-In Controls Chapter 6

[277]

Conversely, the OnDragStart method is marked as abstract, requiring it to be
overridden in all derived classes. This is the method that prepares the data for the drag and
drop process, and is required to call the StartDrag method of the base class to start the
operation, passing the prepared data.

In this particular example, our virtual method is left empty in the base class and there is no
need to call it from the overridden method. More typically, the base class would contain a
default implementation, which could be overridden in derived classes, but may require a
call to the base class, in order to retain its functionality.

For example, a .NET Framework programming guideline exists for raising base class events
from derived classes. Ordinarily, derived classes cannot raise base class events and any
attempts to do so will be met with a compilation error:

The event ClassName.EventName can only appear on the left hand side of +=
or -= (except when used from within the type ClassName)

The solution to this problem from the guidelines is to wrap the invocation of these events in
a protected method in the base class, so it can be called or overridden in derived classes.
Let's add a custom EventArgs class and an event into our AddressControl control that
demonstrates this guideline:

public class AddressEventArgs : EventArgs
{
 public AddressEventArgs(Address oldAddress, Address newAddress)
 {
 OldAddress = oldAddress;
 NewAddress = newAddress;
 }

 public Address OldAddress { get; }

 public Address NewAddress { get; }
}

...

public event EventHandler<AddressEventArgs> AddressChanged;

...

public virtual Address Address
{
 get { return (Address)GetValue(AddressProperty); }
 set
 {

Adapting the Built-In Controls Chapter 6

[278]

 if (!Address.Equals(value))
 {
 Address oldAddress = Address;
 SetValue(AddressProperty, value);
 OnAddressChanged(new AddressEventArgs(oldAddress, value));
 }
 }
}

...

protected virtual void OnAddressChanged(AddressEventArgs e)
{
 AddressChanged?.Invoke(this, e);
}

First, we create a custom EventArgs class for our event. Then, we declare an event named
AddressChanged and a protected virtual method that raises it, using the null conditional
operator. This can be called directly from derived classes to raise the event, but also
overridden, to add to or to stop the base class implementation from executing.

Finally, we update our Address property to call the invocation method, passing in the
required previous and current Address objects. Note that we now also mark this property
as virtual, so that derived classes can override it as well, to fully control how, when and if
the event should be raised.

This is a far more preferable solution to declaring a virtual event and overriding it in a
derived class, as the compiler does not always handle this situation as expected, due to
some complicated event overriding rules, and we cannot always be certain which version of
the event a subscriber will actually by subscribing to.

Now that we have a better understanding of these protected methods, let's take a look at
what other kinds of things we can do by overriding them in derived classes. We will use an
extended example that raises a number of problems, that we can fix by overriding a
number of these protected base class methods.

Tailoring to attain our requirements
Let's imagine that we want to create an application that displays tabular data. This doesn't
initially sound very complicated, but it is actually a very good example with which to
demonstrate how to adapt the built-in .NET controls to fulfill our requirements. As we
progress through this example, we will come across several potential problems and find out
how to overcome each one in turn.

Adapting the Built-In Controls Chapter 6

[279]

For this extended example, we will create a Spreadsheet control. As always, when
creating new controls, we look at the existing controls, to see if any of them can provide us
with a good starting point. The first control that springs to mind is the Grid panel, as it has
rows, columns and therefore also cells, but the creation of all of the RowDefinition and
ColumnDefinition objects could be cumbersome or problematic.

There is also the UniformGrid panel, but as its name suggests, all of its cells are uniform,
or the same size as each other, but this is not always the case in spreadsheets. We could
potentially use an ItemsControl object and a custom DataTemplate to draw the borders
and contents of each cell manually, but could there be a better starting point?

How about the DataGrid control? It has rows, columns, and cells, and even draws the grid
lines between the cells for us. It also has the concept of a selected cell, which could be useful
if we wanted users to interact with our spreadsheet control. It has no numbers, letters, or
selected cell markers in the grid axes, but we can extend the control to add these, so it
seems like the best candidate for the job.

The first thing that we need to do is to create a new class that extends the DataGrid class.
As we saw earlier in this chapter, we can do this by adding a UserControl to our project
and replacing the word UserControl with the word DataGrid in both the XAML file and
its code behind file. Failure to change both will result in a design-time error that complains
about mismatched classes.

Let's take a look at our new Spreadsheet class:

using System.Windows.Controls;

namespace CompanyName.ApplicationName.Views.Controls
{
 public partial class Spreadsheet : DataGrid
 {
 public Spreadsheet()
 {
 InitializeComponent();
 }
 }
}

The code behind is a simple affair, currently with no custom code in it. The XAML
however, has a number of important properties set in it, so let's see that now:

<DataGrid x:Class="CompanyName.ApplicationName.Views.Controls.Spreadsheet"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 AutoGenerateColumns="False" SelectionUnit="Cell" SelectionMode="Single"

Adapting the Built-In Controls Chapter 6

[280]

 IsReadOnly="True" RowHeight="20" RowHeaderWidth="26"
ColumnHeaderHeight="26"
 CanUserAddRows="False" CanUserDeleteRows="False"
CanUserReorderColumns="False"
 CanUserResizeColumns="False" CanUserResizeRows="False"
 HorizontalGridLinesBrush="{DynamicResource GridlinesBrush}"
 VerticalGridLinesBrush="{DynamicResource GridlinesBrush}"
 BorderBrush="{DynamicResource BorderBrush}">
 <DataGrid.Resources>
 <Color x:Key="BackgroundColor">#FFE6E6E6</Color>
 <Color x:Key="BorderColor">#FF999999</Color>
 <SolidColorBrush x:Key="BackgroundBrush" Color="{StaticResource
BackgroundColor}" />
 <SolidColorBrush x:Key="BorderBrush" Color="{StaticResource
BorderColor}" />
 <SolidColorBrush x:Key="SelectedBackgroundBrush" Color="#FFD2D2D2" />
 <SolidColorBrush x:Key="GridlinesBrush" Color="#FFD4D4D4" />
 <SolidColorBrush x:Key="SelectionBrush" Color="#FF217346" />
 </DataGrid.Resources>
</DataGrid>

For this implementation, we set the AutoGenerateColumns property to False, because
we will be programmatically creating the columns of our spreadsheet control. In order to
approximate a spreadsheet control, we also need to restrict the selection possibilities of our
custom DataGrid.

As such, we set the SelectionUnit property to Cell, so that users select just the cell that
they click on, rather than the whole row, which is the default selection behavior. In
addition, to simplify this example, we also set the SelectionMode property to Single, the
IsReadOnly property to True and the RowHeight property to 20.

Our row and column headers will both be 26 pixels each, so we set the RowHeaderWidth
and ColumnHeaderHeight properties to 26. Note that we could set the row and column
header dimensions in their relative styles instead, but we will need to reference these
properties later, so it is important that we set them here. The next five properties, prefixed
with CanUser, have also been set to False, to further shorten this example.

We then set both of the HorizontalGridLinesBrush and VerticalGridLinesBrush
properties to the GridlinesBrush brush from the Resources section and the
BorderBrush property to the BorderBrush brush. Note that we need to use a
DynamicResource markup extension in these cases, because these brushes are defined
after the DataGrid declaration, along with the rest of the resources, and the XAML parser
would not be able to locate them with a standard StaticResource markup extension.

Adapting the Built-In Controls Chapter 6

[281]

Also, note that it is essential that we remove the empty Grid panel that Visual Studio adds
into each new UserControl. The reason is that any elements declared inside
the DataGrid control are determined to be its items and we cannot simultaneously use
both its Items property and its ItemsSource property, which we intend on using. If we
use them both, we'll see this exception being thrown at runtime:

System.InvalidOperationException: 'Items collection must be empty before
using ItemsSource.'

Let's move on now, to investigate how we can display data in our spreadsheet.

Populating with Data
In order to get some data into our Spreadsheet control, we will need a class to represent
each cell in the spreadsheet. Let's take a look at a basic Cell class now:

namespace CompanyName.ApplicationName.DataModels
{
 public class Cell : BaseDataModel
 {
 private string address = string.Empty, content = string.Empty;
 private double width = 0;

 public Cell(string address, string content, double width)
 {
 Address = address;
 Content = content;
 Width = width;
 }

 public string Address
 {
 get { return address; }
 set { if (address != value) { address = value;
 NotifyPropertyChanged(); } }
 }

 public string Content
 {
 get { return content; }
 set { if (content != value) { content = value;
 NotifyPropertyChanged(); } }
 }

 public double Width

Adapting the Built-In Controls Chapter 6

[282]

 {
 get { return width; }
 set { if (width != value) { width = value; NotifyPropertyChanged(); }
}
 }

 public override string ToString()
 {
 return $"{Address}: {Content}";
 }
 }
}

This is a very straight forward class, with just three properties, a constructor to populate
those properties, and an overridden ToString method. As usual, we extend our
BaseDataModel class to provide us with access to the INotifyPropertyChanged
interface. Note that in a real spreadsheet-based application, we would have many more
properties in this class, to enable us to style and format the content appropriately.

Let's now move on, to create our SpreadsheetViewModel and SpreadsheetView classes.
In the SpreadsheetViewModel class, we populate a DataTable with some basic example
data and we data bind that to our new Spreadsheet control in the SpreadsheetView
class:

using CompanyName.ApplicationName.DataModels;
using System.Data;

namespace CompanyName.ApplicationName.ViewModels
{
 public class SpreadsheetViewModel : BaseViewModel
 {
 private DataRowCollection dataRowCollection = null;

 public SpreadsheetViewModel()
 {
 Cell[] Cells = new Cell[9];
 Cells[0] = new Cell("A1", "", 64);
 Cells[1] = new Cell("B1", "", 96);
 Cells[2] = new Cell("C1", "", 64);
 Cells[3] = new Cell("A2", "", 64);
 Cells[4] = new Cell("B2", "Hello World", 96);
 Cells[5] = new Cell("C2", "", 64);
 Cells[6] = new Cell("A3", "", 64);
 Cells[7] = new Cell("B3", "", 96);
 Cells[8] = new Cell("C3", "", 64);

 DataTable table = new DataTable();

Adapting the Built-In Controls Chapter 6

[283]

 table.Columns.Add("A", typeof(Cell));
 table.Columns.Add("B", typeof(Cell));
 table.Columns.Add("C", typeof(Cell));
 table.Rows.Add(Cells[0], Cells[1], Cells[2]);
 table.Rows.Add(Cells[3], Cells[4], Cells[5]);
 table.Rows.Add(Cells[6], Cells[7], Cells[8]);

 Rows = table.Rows;
 }

 public DataRowCollection Rows
 {
 get { return dataRowCollection; }
 set { if (dataRowCollection != value) { dataRowCollection = value;
 NotifyPropertyChanged(); } }
 }
 }
}

In this very simple View Model, we declare a single property of type DataRowCollection,
to contain our spreadsheet data. Using this type enables us to easily populate our
spreadsheet from a DataTable object, which we may have loaded from a database, or
generated from an XML file, for example.

In the constructor, we programmatically initialize and populate a DataTable with example
Cell objects and set its Rows property value to our Rows property. Let's see how this Rows
property is data-bound to our Spreadsheet control in the SpreadsheetView class now:

<UserControl x:Class="CompanyName.ApplicationName.Views.SpreadsheetView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls="clr-
namespace:CompanyName.ApplicationName.Views.Controls">
 <Controls:Spreadsheet ItemsSource="{Binding Rows}" Margin="50" />
</UserControl>

Once again, this is a very simple class, with nothing other than a XAML Namespace
declaration for our Controls project and one of our Spreadsheet controls, with its
ItemsSource property data bound to the Rows property of our View Model. The code
behind is even more bare, with no custom code in it at all. Also, remember to link our View
and View Model together, using whichever method you prefer.

Adapting the Built-In Controls Chapter 6

[284]

Before we can see any data in our Spreadsheet control, however, we will need to declare a
DataTemplate to define how each cell should be rendered and programmatically set up
our columns, in relation to the data-bound items. Let's declare the required XAML
Namespace in the XAML file and add the DataTemplate into the Resources section of
our Spreadsheet control first:

xmlns:DataModels="clr-namespace:CompanyName.ApplicationName.DataModels;
 assembly=CompanyName.ApplicationName.DataModels"
...
<DataTemplate x:Key="CellTemplate" DataType="{x:Type DataModels:Cell}">
 <TextBlock Text="{Binding Content}" HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</DataTemplate>

Here, we have a horizontally centered TextBlock control, to output the contents of each
cell. In a real-world application, we'd surround it with a Border element, to color the
background of each cell and data bind to many more properties, to enable us to set different
style and formatting settings for each cell. For this example, however, we'll keep it simple.

Returning to the subject of column generation now, remember that we do not know how
many columns there will be in the incoming data, so we need to find a place to set them up
programmatically. For this, we return to the protected base class methods.

Looking through the protected methods of the DataGrid class, we see a good candidate:
the OnItemsSourceChanged method. This method will be called each time the
ItemsSource value changes, so it's an ideal place to initialize our spreadsheet columns
when the data source changes.

But our items are DataRow objects, with each Cell object being in a different location in its
ItemArray collection. We need a way to use the array syntax to data bind each Cell, but
the built-in column types don't have this functionality. As such, we will need to create a
custom one and the DataGridTemplateColumn class is the best place to start.

We can override this class to add a property named Binding of type Binding and use it to
set the binding on the UI element that is generated for each cell. Looking through the
protected methods in the DataGridTemplateColumn class, we find the GenerateElement
method, which generates these UI elements. Let's see this new
DataGridBoundTemplateColumn class now:

using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Views.Controls

Adapting the Built-In Controls Chapter 6

[285]

{
 public class DataGridBoundTemplateColumn : DataGridTemplateColumn
 {
 public Binding Binding { get; set; }

 protected override FrameworkElement GenerateElement(DataGridCell cell,
 object dataItem)
 {
 FrameworkElement element = base.GenerateElement(cell, dataItem);
 if (Binding != null)
 element.SetBinding(ContentPresenter.ContentProperty, Binding);
 return element;
 }
 }
}

This is another simple class and, we start by extending the DataGridTemplateColumn
class and declaring the aforementioned Binding property. We then override the
GenerateElement method and in it, first call the base class implementation to generate the
FrameworkElement object that relates to the current cell, passing the input parameters
through unchanged.

If the Binding property is not null, we then call the SetBinding method on the element,
specifying the ContentPresenter.ContentProperty Dependency Property as the
binding target and passing the Binding object from the Binding property through to
connect with it. We end by simply returning the generated element.

Now, let's return to the code behind of our Spreadsheet class, where we need to use our
new DataGridBoundTemplateColumn class:

using CompanyName.ApplicationName.DataModels;
using System.Collections;
using System.Data;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;

...

protected override void OnItemsSourceChanged(IEnumerable oldValue,
 IEnumerable newValue)
{
 if (!(newValue is DataRowCollection rows) || rows.Count == 0) return;
 Cell[] cells = rows[0].ItemArray.Cast<Cell>().ToArray();
 Columns.Clear();

Adapting the Built-In Controls Chapter 6

[286]

 DataTemplate cellTemplate = (DataTemplate)FindResource("CellTemplate");
 for (int i = 0; i < cells.Length; i++)
 {
 DataGridBoundTemplateColumn column = new DataGridBoundTemplateColumn
 {
 Header = GetColumnName(i + 1),
 CellTemplate = cellTemplate,
 Binding = new Binding($"[{i}]"),
 Width = cells[i].Width
 };
 Columns.Add(column);
 }
}

private string GetColumnName(int index)
{
 if (index <= 26) return ((char)(index + 64)).ToString();
 if (index % 26 == 0)
 return string.Concat(GetColumnName(index / 26 - 1), "Z");
 return string.Concat(GetColumnName(index / 26),
 GetColumnName(index % 26));
}

As mentioned previously, we override the OnItemsSourceChanged method to initialize
our spreadsheet columns each time the data source changes. In it, we use C# 6.0 Pattern
Matching to verify that the newValue input parameter is not null and is of type
DataRowCollection, before also checking that the collection has one or more rows in it.

If the DataRowCollection object is valid, then we cast the items in the ItemArray
collection of its first row to an array of our custom type Cell. We only need to use the first
row, because here, we are just setting up the columns, not the data. We then clear the
columns of our spreadsheet control and find the DataTemplate named CellTemplate
from the control's Resources section.

Next, we iterate through the Cell objects in the array, adding a new
DataGridBoundTemplateColumn element to the spreadsheet's Columns collection for
each one. Each column element is initialized with a Header, taken from the
GetColumnName method, the CellTemplate DataTemplate, the Width from the Cell
object, and a Binding object.

Note that the Binding path is set to $"[{i}]", which would translate to "[0]" for the first
item for example, and represents the standard indexing notation. This would result in the
binding path being set to the first item in each row of the data-bound collection, or put
another way, each cell in the first column of our data source.

Adapting the Built-In Controls Chapter 6

[287]

If the input value in the GetColumnName method is between 1 and 26, we add 64 to it,
before casting it to a char and then calling the ToString method on the result. The capital
A character has the integer value of 65 in the ASCII table and so, this code has the effect of
turning the index of the first 26 columns into the letters A to Z.

If the input value is more than 26 and is also an exact multiple of 26, then we return the
string concatenation of a recursive call to the GetColumnName method, passing in the factor
of the input value when it is divided by 26, with 1 subtracted from it, and the letter Z.

If none of the if conditions are met, we return the result of two more recursive calls: the
first passed value represents the factor of the input value when it is divided by 26 and the
second represents the remainder of the input value when it is divided by 26.

In plain English, the first line outputs letters A to Z, while the second handles column
identities that contain more than a single letter and end in the letter Z, and the third line
handles all of the rest. Let's see what we have when running the application so far:

Progressing toward the Target
So, what changes do we need to make to the turn this DataGrid control into something that looks
more like a spreadsheet? We need to style it accordingly and to populate the row headers with
numbers that identify each row. We also need to highlight the relevant row and column
headers when a cell is selected and can implement an animated selection rectangle to
highlight the selected cell, instead of using the default highlighting shown in the image.

First, let's populate the row headers with numbers. There are several ways to achieve this,
but I prefer to simply ask each row what its index is in a converter class and connect it to
the row header via a data binding. Let's see this converter now:

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Controls;

Adapting the Built-In Controls Chapter 6

[288]

using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
[ValueConversion(typeof(DataGridRow), typeof(int))]
 public class DataGridRowToRowNumberConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 if (value is DataGridRow dataGridRow)
 return dataGridRow.GetIndex() + 1;
 return DependencyProperty.UnsetValue;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

This is another simple class and, as usual, we start by specifying the data types involved in
the converter in the ValueConversion attribute. In this case, our input will be DataRow
objects and our output will be their integer row numbers. In the Convert method, we use
Pattern Matching from C# 6.0 as a shortcut to validate that our input value is not null and
is of the appropriate type and if suitable, to cast it to that type.

If the input is valid, we call the GetIndex method on the pre-cast dataGridRow variable,
remembering to add 1 to the zero-based method result, before returning it from the
converter. For all other input values, we return the DependencyProperty.UnsetValue
value. As we will not need to convert any values in the other direction, we leave the
ConvertBack method unimplemented.

Let's see how we use this converter class now. First, we need to set up a XAML
Namespace for our Converters CLR Namespace and create an instance of it in the
control's Resources section:

xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters"
...

<Converters:DataGridRowToRowNumberConverter
 x:Key="DataGridRowToRowNumberConverter" />

Adapting the Built-In Controls Chapter 6

[289]

We are then able to use it in a data binding on the Text property of a TextBlock element
in the DataTemplate, that is applied to the RowHeaderTemplate property in our custom
DataGrid:

<DataGrid.RowHeaderTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path = .,
 RelativeSource={RelativeSource AncestorType={x:Type DataGridRow}},
 Converter={StaticResource DataGridRowToRowNumberConverter}}" />
 </DataTemplate>
</DataGrid.RowHeaderTemplate>

Note that the binding path is set to ., which as you may remember, sets it to the whole
binding object. The RelativeSource binding sets the binding source to the first ancestor
of the TextBlock of type DataGridRow, and so we pass the whole DataGridRow object
through to the binding and therefore, also to the converter, as required.

Also, note that we must declare this RowHeaderTemplate property below the Resources
section in the XAML file. Failure to do this will result in the following runtime error:

Cannot find resource named 'DataGridRowToRowNumberConverter'. Resource
names are case sensitive.

Whereas sometimes we can fix these "reference not found" errors by using a
DynamicResource markup extension instead of a StaticResource markup extension, it
won't work in this case. This is because we can only use them on a DependencyProperty
of a DependencyObject and the Converter property is not a DependencyProperty and
the Binding class is not a DependencyObject.

Let's see what our spreadsheet looks like now:

Adapting the Built-In Controls Chapter 6

[290]

As can be seen from the preceding image, we clearly need to add some styling to fix some
issues and make it look more like a typical spreadsheet:

<!--Default Selection Colors-->
<SolidColorBrush
 x:Key="{x:Static SystemColors.HighlightBrushKey}" Color="Transparent" />
<SolidColorBrush
 x:Key="{x:Static SystemColors.HighlightTextBrushKey}" Color="Black" />
<SolidColorBrush
 x:Key="{x:Static DataGrid.FocusBorderBrushKey}" Color="Transparent" />
<SolidColorBrush x:Key="{x:Static
 SystemColors.InactiveSelectionHighlightBrushKey}" Color="Transparent" />
<LinearGradientBrush x:Key="HorizontalBorderGradient" StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Color="{StaticResource BackgroundColor}" />
 <GradientStop Color="{StaticResource BorderColor}" Offset="1" />
</LinearGradientBrush>
<LinearGradientBrush x:Key="VerticalBorderGradient" StartPoint="0,0"
 EndPoint="1,0">
 <GradientStop Color="{StaticResource BackgroundColor}" />
 <GradientStop Color="{StaticResource BorderColor}" Offset="1" />
</LinearGradientBrush>
<LinearGradientBrush x:Key="DiagonalBorderGradient" StartPoint="0.2,0"
 EndPoint="1,1">
 <GradientStop Color="{StaticResource BackgroundColor}" Offset="0.45" />
 <GradientStop Color="{StaticResource BorderColor}" Offset="1" />
</LinearGradientBrush>

...

<Style TargetType="{x:Type DataGridRowHeader}">
 <Setter Property="Background"
 Value="{StaticResource BackgroundBrush}" />
 <Setter Property="BorderThickness" Value="0,0,1,1" />
 <Setter Property="BorderBrush"
 Value="{StaticResource VerticalBorderGradient}" />
 <Setter Property="Padding" Value="4,0" />
 <Setter Property="HorizontalContentAlignment" Value="Center" />
 <Setter Property="FontSize" Value="13" />
</Style>
<Style TargetType="{x:Type DataGridColumnHeader}">
 <Setter Property="Background"
 Value="{StaticResource BackgroundBrush}" />
 <Setter Property="BorderThickness" Value="0,0,1,1" />
 <Setter Property="BorderBrush"
 Value="{StaticResource HorizontalBorderGradient}" />
 <Setter Property="Padding" Value="0" />
 <Setter Property="HorizontalContentAlignment" Value="Center" />

Adapting the Built-In Controls Chapter 6

[291]

 <Setter Property="FontSize" Value="13" />
</Style>

The only thing to note here are the first four SolidColorBrush objects that we declared.
They are used by the .NET Framework to set the default selection colors for a number of the
built-in controls. We can use them to change the default blue background and white text
shown in the previous image. There are many more of these default colors to be found in
the SystemColors class, so it's worth familiarizing yourself with them.

Let's see what our spreadsheet looks like now:

Now, our Spreadsheet control is starting to look more like a typical spreadsheet
application, but we have no highlighting for our selected cell anymore. You may also notice
that the row headers are not center-aligned horizontally, as our style suggests they should
be.

This happens because, unlike the default ControlTemplate for the
DataGridColumnHeader class, the default ControlTemplate for the
DataGridRowHeader class does not map the HorizontalContentAlignment property to
the HorizontalAlignment property on any internal elements within the template.

This might at first seem like an oversight on Microsoft's part, but it is actually because, in
the default ControlTemplate, each DataGridRowHeader object has an additional control
that displays the validation error to the right of the header content. With this extra control
taking up the limited space, there is not enough space to horizontally center the row
header.

To fix this problem, we will need to alter the default ControlTemplate, to remove the
control that displays the error template. Co-incidentally, we will also need to alter this
template to be able to highlight the selected cell in the row header. Likewise, to highlight
the selected cell in the column header, we will need to adjust the default
ControlTemplate for the DataGridColumnHeader class.

Adapting the Built-In Controls Chapter 6

[292]

Highlighting the selection
Let’s now move onto the task of highlighting the selected cell. Here, we will find out what
is required to create a selection rectangle around the selected cell, that smoothly animates
from selection to selection. But before that, let's investigate how we can also indicate which
cell is selected in the axes of our spreadsheet control.

Indicating in the Axes
In order to highlight the currently selected cell in the row and column headers, we will
need to update the two relating default ControlTemplate objects, as just described. But
before we do that, we will need to declare two new IValueConverter classes as well. Let's
look at the row header converter class first:

using System;
using System.Data;
using System.Globalization;
using System.Linq;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 public class DataGridRowHeaderSelectionMultiConverter :
 IMultiValueConverter
 {
 public object Convert(object[] values, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (values == null || values.Count() != 2 ||
 !(values[0] is DataRow selectedDataRow) ||
 !(values[1] is DataRow dataRowToCompare)) return false;
 return selectedDataRow.Equals(dataRowToCompare);
 }

 public object[] ConvertBack(object value, Type[] targetTypes,
 object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

Adapting the Built-In Controls Chapter 6

[293]

For this converter, we extend the IMultiValueConverter interface, and in the Convert
method, we first validate our values input parameter. If it is null, contains more or less
than two objects, or if either of the contained objects are not non-null DataRow objects, we
return false. If the input parameter is valid, we use C# 6.0 Pattern Matching to cast the
two contained objects to the DataRow type.

The first represents the DataRow object that contains the currently selected cell and the
second comes from the DataRow object to compare. We return true if the selected DataRow
object equals the currently compared DataRow object and false for all others. You can
think of this as each row header asking the converter in turn, if it is in the same DataRow
object as the currently selected cell. The ConvertBack method is unrequired for our
example and so, is left unimplemented.

Let's now investigate the changes that we need to make to the default ControlTemplate
for the DataGridRowHeader class. As described in Chapter 5, Using the Right Controls for
the Job, in the Modifying Existing Controls section, we can create a copy of the default
ControlTemplate from the Properties panel in Visual Studio. Note that if we do not
already have a control of the correct type in our XAML file, we can simply declare one
temporarily, select it, then continue with the process of template extraction as described,
remembering to delete it afterwards.

As this template is quite long, we won't show it all here, instead highlighting just the areas
that we need to change. The entire code will be available in the separate downloadable code
bundle that comes with this book. Before we can use this template however, we need to add
a reference to the PresentationFramework.Aero assembly to our project and a XAML
Namespace for the Microsoft.Windows.Themes CLR Namespace:

xmlns:Themes="clr-namespace:Microsoft.Windows.Themes;
 assembly=PresentationFramework.Aero"

Next, we need to add an instance of our new converter class into our spreadsheet control's
Resources section:

<Converters:DataGridRowHeaderSelectionMultiConverter
 x:Key="DataGridRowHeaderSelectionMultiConverter" />

Now, let's see the template:

<ControlTemplate x:Key="DataGridRowHeaderControlTemplate"
 TargetType="{x:Type DataGridRowHeader}">
 <Grid>
 <Themes:DataGridHeaderBorder Name="Border"
 IsHitTestVisible="False" ... >
 <ContentPresenter ... HorizontalAlignment="{TemplateBinding

Adapting the Built-In Controls Chapter 6

[294]

 HorizontalContentAlignment}" />
 </Themes:DataGridHeaderBorder>
 <Rectangle Name="ColorSelectionBar" Fill="Transparent"
 IsHitTestVisible="False" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Width="2" Margin="0,-1,0,0" />
 ...
 </Grid>
 <ControlTemplate.Triggers>
 <DataTrigger Value="True">
 <DataTrigger.Binding>
 <MultiBinding Converter="{StaticResource
 DataGridRowHeaderSelectionMultiConverter}">
 <Binding Path="CurrentCell.Item" RelativeSource="{RelativeSource
 AncestorType={x:Type DataGrid}}" />
 <Binding />
 </MultiBinding>
 </DataTrigger.Binding>
 <Setter Property="Foreground"
 Value="{StaticResource SelectionBrush}" />
 <Setter TargetName="ColorSelectionBar" Property="Fill"
 Value="{StaticResource SelectionBrush}" />
 <Setter TargetName="Border" Property="Background"
 Value="{StaticResource SelectedBackgroundBrush}" />
 </DataTrigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

In order to apply the template, we'll need to add another Setter element into our Style
for the DataGridRowHeader class, making sure that the template is declared before it in
the XAML:

<Setter Property="Template"
 Value ="{StaticResource DataGridRowHeaderControlTemplate}" />

After attaining a copy of the default ControlTemplate for the DataGridRowHeader class,
we first named the DataGridHeaderBorder element Border, so that we could refer to it
from the template's Triggers collection. We also set its IsHitTestVisible property to
False to prevent selection from the row headers.

We then removed the control that displayed the validation error template and connected
the HorizontalAlignment property of the internal ContentPresenter element with the
HorizontalContentAlignment property of the parent DataGridRowHeader object via a
TemplateBinding element, so that our style will actually center the header content, as
previously expected.

Adapting the Built-In Controls Chapter 6

[295]

Next, we added a new Rectangle element, named ColorSelectionBar, and a
DataTrigger object. The Rectangle element has its Fill property set to Transparent,
so that it cannot initially be seen, and its IsHitTestVisible property set to False, to
prevent users from being able to interact with it.

We set its VerticalAlignment property to Stretch, so that it spans the full height of the
row header, and its HorizontalAlignment property to Right, to ensure that it lies to the
right of the header, out of the way of the row indicator. Finally, we set its top margin to -1,
in order to extend it over the top border of the header, as it already extends over the bottom
border by one pixel.

We then added a DataTrigger object into the Triggers collection, using a
MultiBinding object to define its conditions. We assigned our
DataGridRowHeaderSelectionMultiConverter instance to the Converter property of
the MultiBinding object.

Note that the MultiBinding object has two bindings: one is the DataRow object that relates
to the CurrentCell property of the DataGrid control and the other is set directly to the
DataRow object that the template is applied to.

When the converter returns true, we paint the ColorSelectionBar element and the
header foreground with our SelectionBrush brush and the Border element, which
represents the background of the row header, with the SelectedBackgroundBrush brush.
This results in the row header of the selected cell being highlighted each time a cell is
selected.

Let's now do the same for the column headers, starting with a look at the required
DataGridColumnHeaderSelectionMultiConverter class:

using System;
using System.Globalization;
using System.Linq;
using System.Windows;
using System.Windows.Data;

namespace CompanyName.ApplicationName.Converters
{
 public class DataGridColumnHeaderSelectionMultiConverter :
 IMultiValueConverter
 {
 public object Convert(object[] values, Type targetType,
 object parameter, CultureInfo culture)
 {
 if (values == null || values.Count() != 2 ||

Adapting the Built-In Controls Chapter 6

[296]

 values.Any(v => v == null || v == DependencyProperty.UnsetValue))
 return false;
 string selectedColumnHeader = values[0].ToString();
 string columnHeaderToCompare = values[1].ToString();
 return selectedColumnHeader.Equals(columnHeaderToCompare);
 }

 public object[] ConvertBack(object value, Type[] targetTypes,
 object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

We again extend the IMultiValueConverter interface, and in the Convert method, we
start by checking the input values to ensure their validity for this converter. We validate
that the values input parameter is not null and that it contains two non-null values, that
are also not unset values. If any of these checks fail, we return false.

If the values input parameter is valid, we call the object.ToString method on the two
objects contained within it. The first value represents the text in the selected column header
and the second represents the text in the column header to compare.

Every column header will call this converter in turn and if the column header to compare
equals the selected column header, that signifies that it is the column that contains the
selected cell and we return true, otherwise we return false. As the ConvertBack method
is unrequired for this example, it is left unimplemented.

Before we alter the default ControlTemplate for the DataGridColumnHeader class, we
will need to add a reference to our new converter class into our spreadsheet control's
Resources section:

<Converters:DataGridColumnHeaderSelectionMultiConverter
 x:Key="DataGridColumnHeaderSelectionMultiConverter" />

Now, let's see the edited template:

<ControlTemplate x:Key="DataGridColumnHeaderControlTemplate"
 TargetType="{x:Type DataGridColumnHeader}">
 <Grid>
 <Themes:DataGridHeaderBorder Name="Border" ... />
 <Rectangle Name="ColorSelectionBar" Fill="Transparent"
 IsHitTestVisible="False" HorizontalAlignment="Stretch"
 VerticalAlignment="Bottom" Height="2" Margin="-1,0,0,0" />
 ...

Adapting the Built-In Controls Chapter 6

[297]

 </Grid>
 <ControlTemplate.Triggers>
 <DataTrigger Value="True">
 <DataTrigger.Binding>
 <MultiBinding Converter="{StaticResource
 DataGridColumnHeaderSelectionMultiConverter}">
 <Binding Path="CurrentCell.Column.Header" RelativeSource="{
 RelativeSource AncestorType={x:Type DataGrid}}" />
 <Binding Path="Content" RelativeSource="{RelativeSource Self}" />
 </MultiBinding>
 </DataTrigger.Binding>
 <Setter Property="Foreground"
 Value="{StaticResource SelectionBrush}" />
 <Setter TargetName="ColorSelectionBar" Property="Fill"
 Value="{StaticResource SelectionBrush}" />
 <Setter TargetName="Border" Property="Background"
 Value="{StaticResource SelectedBackgroundBrush}" />
 </DataTrigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

Starting with the default ControlTemplate for the DataGridColumnHeader class, we
again added a single UI element and a single DataTrigger object, with which to control its
visibility, as we did with our custom DataGridRowHeader ControlTemplate. However,
this template requires less alteration, as its header is already centered and we do not need
to remove any elements.

Once again, the Rectangle object named ColorSelectionBar is the new element. Note
that we set its Fill property to Transparent, so that it cannot initially be seen. Remember
that there is a column header on every column and we don't want them all to be
highlighted at once.

We set the Rectangle element's IsHitTestVisible property to False, to prevent users
from being able to interact with it. We set its HorizontalAlignment property to Stretch,
so that it spans the full width of the column header, regardless of its size, and its
VerticalAlignment property to Bottom to ensure that it lies at the bottom of the header,
leaving space for the column identifier.

We set its left margin to -1, in order to extend it over the left border of the header, as it
already extends over the right border by one pixel. In the Triggers section of the
ControlTemplate, we added a DataTrigger object, with a MultiBinding object that has
a reference to our DataGridColumnHeaderSelectionMultiConverter class set to its
Converter property.

Adapting the Built-In Controls Chapter 6

[298]

Note that we have two Binding elements connected to it: one is set to the Header property
of the currently selected Column object and the other is set directly to the Content property
of the DataGridColumnHeader class. Each column header will call the converter in turn
and if you remember, the column that contains the selected cell will result in the converter
returning true.

When the MultiBinding object that is connected to this converter returns true, the
DataTrigger Setter fills the header foreground and the ColorSelectionBar rectangle
with the SelectionBrush resource and the background of the header with the
SelectedBackground resource, highlighting the column header of the currently selected
cell.

In order to apply this ControlTemplate object, we'll also need to add a Setter element
into our Style for the DataGridColumnHeader class, making sure that the template
declaration is before the Style declaration in the XAML:

<Setter Property="Template"
 Value ="{StaticResource DataGridColumnHeaderControlTemplate}" />

As you can see, we have made minimal changes to the two default ControlTemplate
objects, yet we have managed to adapt them to our purposes. In this way, we are able to
manipulate the built-in .NET controls, to further extend their original usefulness. Let's see
the visual output from this latest addition to our code:

We now have a grid that is starting to look more like a typical spreadsheet application. Let's
continue and add cell selection highlights for the users.

Adapting the Built-In Controls Chapter 6

[299]

Emphasizing the Selection
All that is left for us to do now is to implement the selection rectangle and the style for the
Select All button in the top left corner of the control. We can accomplish both tasks by
adjusting the default ControlTemplate for the DataGrid class. Let's break this down into
steps. First, we need to add a ControlTemplate for the Select All button into our
Resources section:

<ControlTemplate x:Key="SelectAllButtonControlTemplate"
 TargetType="{x:Type Button}">
 <Border BorderThickness="0,0,1,1" BorderBrush="{StaticResource
 DiagonalBorderGradient}" Background="{StaticResource BackgroundBrush}">
 <Polygon Fill="#FFB3B3B3" Points="0,12 12,12 12,0"
 HorizontalAlignment="Right" VerticalAlignment="Bottom"
 Stretch="Uniform" Margin="10,3,3,3" />
 </Border>
</ControlTemplate>

Here, we have another very simple template, where we replace the default definition of a
Button control with a basic triangle. It contains a Border element, that draws its right and
bottom borders with the DiagonalBorderGradient brush that we added to the
spreadsheet control's resources. It also paints the background of the Button control with
our BackgroundBrush resource.

Within the Border element, we declare a Polygon shape, which we fill with a gray brush.
Its shape is determined by the values declared in its Points property, so it begins at 0,12,
continues to 12,12 , and 12,0, before returning to 0,12. Plotting these values on a graph
would show a triangle and that is the shape that this Polygon element will render.

We align it to the bottom right of the Border element and set its Stretch property to
Uniform to ensure that its aspect ratio is maintained throughout any changes of its size.
Finally, we set its Margin property to space it away from the Border element's edge.

Next, we need to apply the SelectAllButtonControlTemplate template to the Select All
button and add a transparent Canvas element into the ControlTemplate for the
ScrollViewer object that appears inside the default ControlTemplate for the DataGrid
class. Let's extract this from the default template and declare it in our Resources section
too:

<ControlTemplate x:Key="ScrollViewerControlTemplate"
 TargetType="{x:Type ScrollViewer}">
 <Grid>
 ...
 <Button Command="ApplicationCommands.SelectAll"

Adapting the Built-In Controls Chapter 6

[300]

 Focusable="False" Width="26" Height="26"
 Template="{StaticResource SelectAllButtonControlTemplate}" />
 ...
 <ScrollContentPresenter x:Name="PART_ScrollContentPresenter" ... />
 <Border Grid.Row="1" Grid.Column="1" ClipToBounds="True"
 BorderThickness="0" IsHitTestVisible="False" Margin="-2">
 <Canvas Name="SelectionRectangleCanvas" Background="{x:Null}"
 IsHitTestVisible="False" RenderTransformOrigin="0.5,0.5"
 Margin="2" />
 </Border>
 <ScrollBar x:Name="PART_VerticalScrollBar" ... />
 ...
 </Grid>
</ControlTemplate>

We first set a width and height of 26 pixels on the Select All button, in line with the
dimensions of our row and column headers. We then apply our ControlTemplate from
the Resources section to it. We also removed the Visibility binding from the default
template, as we won't be needing that in our example. Note that this button has no action in
our example and is purely decorative.

Next, we added the transparent Canvas control, that will display the selection rectangle,
within a Border element. Note that we must add it after the required
PART_ScrollContentPresenter named part, to ensure that the selection rectangle will
appear above the cells in the Z plane. Also, notice that we must wrap it in an invisible
Border element, so that we can clip its bounds. Try removing the ClipToBounds property
and resize the control to be smaller as an experiment to see what happens.

We set the Margin property on the Border element to be -2 in all directions, so that it can
display the selection rectangle over and just outside the bounds of each cell. We, therefore,
need to set the Margin property on the Canvas that draws the rectangle to 2 in all
directions, to compensate for the border's negative margin.

We name the Canvas element, so that we can access it from the code behind, and set its
Background property to null, which is slightly cheaper than setting it to Transparent.
We then set the IsHitTestVisible property to False, to make it invisible to the users
and their mouse cursors and center the origin of the render transform, which we will use to
update the position of the Canvas element each time the containing ScrollViewer object
is moved.

Adapting the Built-In Controls Chapter 6

[301]

Let's see our simplified ControlTemplate for the DataGrid class now:

<ControlTemplate x:Key="DataGridControlTemplate"
 TargetType="{x:Type DataGrid}">
 <Border ... >
 <ScrollViewer x:Name="DG_ScrollViewer" Focusable="False"
 CanContentScroll="False"
 Template="{StaticResource ScrollViewerControlTemplate}">
 <ItemsPresenter
 SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}" />
 </ScrollViewer>
 </Border>
</ControlTemplate>

We made a few changes to the default ControlTemplate for the DataGrid control. The
first was to set the CanContentScroll property to False on the ScrollViewer element
named DG_ScrollViewer, to make it scroll in physical units (pixels) instead of logical
units (rows). The only other change was to replace its inline ControlTemplate object with
a reference to the custom template that we added into the Resources section.

We must also remember to assign this custom ControlTemplate object to our spreadsheet
control. This can be achieved in the class declaration:

<DataGrid
 x:Class="CompanyName.ApplicationName.Views.Controls.Spreadsheet" ...
 Template="{DynamicResource DataGridControlTemplate}">
 ...
</DataGrid>

Now, let's see our Spreadsheet control again, with all the latest changes:

We can see that the job is nearly complete. We now have the XAML all set up to display the
selection rectangle, but we still need to programmatically position and animate it. First,
we'll need to attain a reference to the Scrollviewer from our custom DataGrid template.

Adapting the Built-In Controls Chapter 6

[302]

We can achieve this by overriding another method from the DataGrid base class. The
OnApplyTemplate method is called whenever a ControlTemplate is applied, so it's an
ideal location to access the elements contained within it:

private ScrollViewer scrollViewer;

...

public override void OnApplyTemplate()
{
 scrollViewer = Template.FindName("DG_ScrollViewer", this) as
ScrollViewer;
}

In this method, we call the FindName method on the Spreadsheet control's template,
passing in the name of our ScrollViewer object and a reference to the spreadsheet, as the
templated parent. We then cast the returned object to a ScrollViewer, using the as
operator keyword, to avoid exceptions being thrown.

Note that as this spreadsheet example is quite long, we have omitted the usual null
checks, with regards to accessing the internal controls from the ControlTemplate
elements. In a real-world application, these checks should always be implemented, as we
can never be sure that our required elements will be in the template, because it may have
been changed.

Next, we need a reference to the Canvas panel that we will draw our selection rectangle on:

private Canvas selectionRectangleCanvas;

...

private void SpreadsheetScrollViewer_ScrollChanged(object sender,
 ScrollChangedEventArgs e)
{
 if (selectionRectangleCanvas == null) GetCanvasReference();
}

private void GetCanvasReference()
{
 ControlTemplate scrollViewerControlTemplate = scrollViewer.Template;
 selectionRectangleCanvas = scrollViewerControlTemplate.
 FindName("SelectionRectangleCanvas", scrollViewer) as Canvas;
 selectionRectangleCanvas.RenderTransform = new TranslateTransform();
}

Adapting the Built-In Controls Chapter 6

[303]

In the SpreadsheetScrollViewer_ScrollChanged event handler, we start by checking
if the selectionRectangleCanvas private variable is null. If it is, we call the
GetCanvasReference method, to attain a reference to it and to assign it to a private
member variable.

In the GetCanvasReference method, we access the ControlTemplate object from the
Template property of the ScrollViewer element that we previously stored a reference to.
We call the FindName method on it, passing in the name of our Canvas object and a
reference to the ScrollViewer element, as its templated parent.

We then assign the returned object, cast to the Canvas type, to the private
selectionRectangleCanvas member variable and set a new TranslateTransform
object to its RenderTransform property. We will use this to update the position of the
Canvas element each time the containing ScrollViewer object's viewport is moved, and
this will ensure that the selection rectangle will be scrolled, along with the spreadsheet.

Note that we attain a reference to the Canvas element from this event handler only in an
attempt to shorten this example. A far better solution would be to extend the
ScrollViewer class and declare a TemplateChanged event, that passed a reference of the
new template in a custom EventArgs class.

We could raise it from an overridden OnApplyTemplate method, as we did to access our
ScrollViewer reference, and subscribe to it from our Spreadsheet class. The problem
with our current implementation is that the ScrollChanged event is raised many times
and each time, we check if we already have the reference and so a lot of CPU cycles will be
wasted when scrolling.

Returning to the current implementation now, let's assign our event handler for the
ScrollChanged event to the ScrollViewer in our custom template for the DataGrid
class:

<ScrollViewer x:Name="DG_ScrollViewer" ...
 ScrollChanged="SpreadsheetScrollViewer_ScrollChanged">

Let's now investigate the code that is used to draw and animate the selection rectangle:

using System;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

...

private Rectangle selectionRectangle;

Adapting the Built-In Controls Chapter 6

[304]

private bool isSelectionRectangleInitialized = false;

...

private void UpdateSelectionRectangle(Point startPosition,
 Point endPosition)
{
 TimeSpan duration = TimeSpan.FromMilliseconds(150);
 if (!isSelectionRectangleInitialized)
 InitializeSelectionRectangle(startPosition, endPosition);
 else
 {
 selectionRectangle.BeginAnimation(WidthProperty, new DoubleAnimation(
 endPosition.X - startPosition.X, duration), HandoffBehavior.Compose);
 selectionRectangle.BeginAnimation(HeightProperty, new DoubleAnimation(
 endPosition.Y - startPosition.Y, duration), HandoffBehavior.Compose);
 }
 TranslateTransform translateTransform =
 selectionRectangle.RenderTransform as TranslateTransform;
 translateTransform.BeginAnimation(TranslateTransform.XProperty,
 new DoubleAnimation(startPosition.X - RowHeaderWidth +
 scrollViewer.HorizontalOffset, duration), HandoffBehavior.Compose);
 translateTransform.BeginAnimation(TranslateTransform.YProperty,
 new DoubleAnimation(startPosition.Y - ColumnHeaderHeight +
 scrollViewer.VerticalOffset, duration), HandoffBehavior.Compose);
}

private void InitializeSelectionRectangle(Point startPosition,
 Point endPosition)
{
 selectionRectangle = new Rectangle();
 selectionRectangle.Width = endPosition.X - startPosition.X;
 selectionRectangle.Height = endPosition.Y - startPosition.Y;
 selectionRectangle.Stroke =
 new SolidColorBrush(Color.FromRgb(33, 115, 70));
 selectionRectangle.StrokeThickness = 2;
 selectionRectangle.RenderTransform = new TranslateTransform();
 Canvas.SetTop(selectionRectangle, 0); // row and column header
 Canvas.SetLeft(selectionRectangle, 0);
 selectionRectangleCanvas.Children.Add(selectionRectangle);
 isSelectionRectangleInitialized = true;
}

In the UpdateSelectionRectangle method, we first declare a duration of 150 ms to use
in our animations and check if the selection rectangle has been initialized or not. If it hasn't,
we call the InitializeSelectionRectangle method, passing the startPosition and
endPosition input parameters through. Let's examine this method before continuing.

Adapting the Built-In Controls Chapter 6

[305]

In the InitializeSelectionRectangle method, we initialize the SelectionRectangle
element, with dimensions calculated from the two Point input parameters and default
values for its stroke. We assign a new TranslateTransform object to its
RenderTransform property, to enable its position to be manipulated in code.

We then use the SetTop and SetLeft Attached Properties of the Canvas class to position
the rectangle in the top left corner of the Canvas panel, that we added into our custom
ControlTemplate for the ScrollViewer class.

We end by adding the SelectionRectangle element into the Children collection of the
selectionRectangleCanvas panel and setting the
isSelectionRectangleInitialized variable to true, to ensure that this initialization
code is only called once.

Returning to the UpdateSelectionRectangle method now, if the selection rectangle has
already been initialized, then we animate its size, from the size of the previous cell to the
size of the newly selected cell, using the startPosition and endPosition input
parameters.

We call the BeginAnimation method on the SelectionRectangle element for both its
WidthProperty and HeightProperty dependency properties, so that the dimensions of
the rectangle will smoothly animate from the size of the previously selected cell to the size
of the new one.

Next, we access the TranslateTransform instance from the RenderTransform property
of the SelectionRectangle element and call the BeginAnimation method on it, for both
the Xproperty and Yproperty Dependency Properties. This is what animates the position
of the selection rectangle on the Canvas that we added into the ScrollViewer element's
template.

To calculate the horizontal position, we subtract the value of the RowHeaderWidth
property, that we set earlier in the XAML class declaration, from the X property value of the
startPosition input parameter and then add the value of the HorizontalOffset
property of the ScrollViewer element.

Likewise, the vertical position is calculated from the Y property value of the
startPosition input parameter, with the value of the ColumnHeaderHeight property
subtracted from it and the value of the VerticalOffset property of the ScrollViewer
element added to it.

Adapting the Built-In Controls Chapter 6

[306]

All four animations share the same duration, that we declared at the start, so that they
morph the dimensions and position of our selection rectangle in unison. They also all set a
HandoffBehavior value of Compose, which basically provides smoother joins between
consecutive animations. We'll discover more about this in Chapter 7, Mastering Practical
Animations, but for now, we'll keep it simple.

So, our UpdateSelectionRectangle method is responsible for animating the selection
rectangle between the previous and current cell selections, but where is it called from? That's
right... we're going to call it from yet another overridden protected base class method.

Looking through the protected base class methods of the DataGrid class, we find the
OnSelectedCellsChanged method, which is called each time a user selects a new cell in
our spreadsheet control, so it's the perfect candidate. Let's take a look at its implementation
now:

protected override void
 OnSelectedCellsChanged(SelectedCellsChangedEventArgs e)
{
 // base.OnSelectedCellsChanged(e);
 if (e.AddedCells != null && e.AddedCells.Count == 1)
 {
 DataGridCellInfo cellInfo = e.AddedCells[0];
 if (!cellInfo.IsValid) return;
 FrameworkElement cellContent =
 cellInfo.Column.GetCellContent(cellInfo.Item);
 if (cellContent == null) return;
 DataGridCell dataGridCell = (DataGridCell)cellContent.Parent;
 if (dataGridCell == null) return;
 Point relativePoint =
 dataGridCell.TransformToAncestor(this).Transform(new Point(0, 0));
 Point startPosition =
 new Point(relativePoint.X - 3, relativePoint.Y - 3);
 Point endPosition =
 new Point(relativePoint.X + dataGridCell.ActualWidth,
 relativePoint.Y + dataGridCell.ActualHeight);
 UpdateSelectionRectangle(startPosition, endPosition);
 }
}

Note that the base class version of this method is responsible for raising the
SelectedCellsChanged event, so if we need that to happen, we should call it from this
method. If we are ever in doubt if to call the base class version of a method that we're
overriding, it's generally safer to do so, as we might lose some required functionality that it
provides otherwise. As we do not require this event in this example however, we can safely
omit the call to the base class method.

Adapting the Built-In Controls Chapter 6

[307]

In our overridden OnSelectedCellsChanged method, we check that the AddedCells
property of the SelectedCellsChangedEventArgs input parameter contains exactly one
item. Note that in this example, it should only ever contain a single item, because we set the
SelectionMode property to Single on our spreadsheet control, but it is always good
practice to validate these things.

We then extract the single DataGridCellInfo object from the AddedCells property and
return execution from the method if it is invalid. If it is valid, we call the GetCellContent
method on its Column property, passing in its Item property, to access the cell content as a
FrameworkElement object. This could benefit from a little more explanation.

The Column property contains the DataGridBoundTemplateColumn element that relates
to the selected cell and likewise, the Item property holds the DataRow object that contains
the selected cell. The returned FrameworkElement object represents the content of the
DataGridCell element, which in our case is a ContentPresenter object.

Any UI elements that we declare in the DataTemplate element that is applied to the
DataGridBoundTemplateColumn. The CellTemplate property can be accessed through
this ContentPresenter object, by walking the visual tree. In our case, that is a simple
TextBlock element. Returning to our code now, if this cell content is null, we return
execution from the method.

If the cell content is valid, we cast its Parent property value to its actual type of
DataGridCell. If this DataGridCell object is null, we also return execution from the
method. If it is valid, we call its TransformToAncestor method, followed by the
Transform method, to find its onscreen position, relative to the spreadsheet control.

We then use the relative position to create the start point, or the top left corner, of the
rectangle, by subtracting 3 pixels in each axis. This ensures that the rectangle will sit just
outside the cell contents, overlapping it slightly.

Similarly, we also use the relative position to create the endpoint, or the bottom right
corner, of the rectangle, by adding the actual dimensions of the DataGridCell object to it.
Finally, we call the UpdateSelectionRectangle method, to draw the selection rectangle,
passing the calculated start and endpoints through.

Now, our selection rectangle is working and smoothly animates from one selected cell to
the next. However, on a bigger spreadsheet, you might notice that it won't scroll in line
with the spreadsheet itself. This is because there is not yet a connection between its position
and the horizontal and vertical offsets of the ScrollViewer that it is defined inside.

Adapting the Built-In Controls Chapter 6

[308]

To address this issue, we will need to update the positional information on the
TranslateTransform object, from the Canvas element that the selection rectangle is
drawn on, each time the spreadsheet control is scrolled. Let's see how we do this, by adding
further code into our SpreadsheetScrollViewer_ScrollChanged event handler now:

private void SpreadsheetScrollViewer_ScrollChanged(object sender,
 ScrollChangedEventArgs e)
{
 if (selectionRectangleCanvas == null) GetCanvasReference();
 TranslateTransform selectionRectangleCanvasTransform =
 selectionRectangleCanvas.RenderTransform as TranslateTransform;
 selectionRectangleCanvas.RenderTransform = new TranslateTransform(
 selectionRectangleCanvasTransform.X - e.HorizontalChange,
 selectionRectangleCanvasTransform.Y - e.VerticalChange);
}

Skipping over the existing code that attained the reference to our selection rectangle
Canvas panel, we access the TranslateTransform element, that we declared in the
GetCanvasReference method, from its RenderTransform property. We then create a
new TranslateTransform object, with the values coming from the original one, plus the
distance scrolled in either direction, and set it back to the RenderTransform property.

Note that we have to do this because the TranslateTransform element is immutable and
cannot be altered. Therefore, we need to replace it with a new element instead of just
updating its property values. Any attempts to modify it will result in a runtime exception
being thrown:

System.InvalidOperationException: 'Cannot set a property on object
'System.Windows.Media.TranslateTransform' because it is in a read-only
state.'

Let's take a final look at the visual output of our spreadsheet control now:

Adapting the Built-In Controls Chapter 6

[309]

Of course, we could continue to improve our spreadsheet control, perhaps by adding event
handlers to detect changes to the size of the rows and columns when users resize them and
update the selection rectangle accordingly. We could extend the Cell class, to add style
and format properties, to style each cell and format the content.

We could add a formula bar or an alternative information panel to display formulas or
further information from the cells when clicked on. We could implement multi-cell
selection, or enable users to edit cell contents. But either way, hopefully, this extended
example has now provided you with enough understanding to be able to undertake these
kinds of advanced projects successfully yourself.

Summary
In this chapter, we further investigated the built-in controls, paying particular attention to
the polymorphic ability to override base class methods in derived classes. We first
examined examples from the .NET Framework source code, before moving on to create our
own examples that highlight this ability.

We continued, introducing extended examples, to help to fully understand the benefits that
can be gained from using this method. Through these examples, we highlighted a number
of problems, and learned how to overcome them each in turn, by extending the built-in
controls and overriding particular base class methods.

In the next chapter, we will take a thorough look at the WPF animation system and
discover how we can utilize it in everyday applications. We'll also find out a number of
techniques to fine-tune animations to get that perfect effect and discover how we can build
animation functionality right into our application framework.

7
Mastering Practical Animations

WPF offers a wide range of animation possibilities, from the simple to the really quite
complex. In this chapter, we will thoroughly explore the WPF property animation system,
yet focus primarily on those parts that can be suitably applied to real-world business
applications. We'll investigate how to control running animations in real time and
predominantly concentrate on XAML-based syntax. We'll then see how we can build
animations right into our application framework.

In WPF, animations are created by repeatedly altering individual property values at regular
intervals. Animations are comprised of a number of components: we need a timing system,
an animation object that is responsible for updating the values of a particular type of object
and a suitable property to animate.

In order to be able to animate a property, it must be a Dependency Property of a
DependencyObject and its type must implement the IAnimatable interface. As most UI
controls extend the DependencyObject class, this enables us to animate the properties of
most controls.

Furthermore, an animation object for the relevant type of property must exist. In WPF, the
animation objects also double up as the timing system, as they extend the Timeline class.
Before investigating the various animation objects, let's first examine the timing system.

Investigating timelines
Animations require some kind of timing mechanism that is responsible for updating the
relevant property values at the right time. In WPF, this timing mechanism is catered for by
the abstract Timeline class, which in short, represents a period of time. All of the available
animation classes extend this class and add their own animation functionality.

Mastering Practical Animations Chapter 7

[311]

When a Timeline class is used for animations, an internal copy is made and frozen, so that
it is immutable. Additionally, a Clock object is created to preserve the runtime timing state
of the Timeline object and is responsible for the actual timing of the animated property
updates. The Timeline object itself does little other than define the relevant period of time.

The Clock object will be automatically created for us when we define a Storyboard object,
or call one of the Animatable.BeginAnimation methods. Note that we do not typically
need to concern ourselves with these Clock objects directly, but it can be helpful to know
about them in order to understand the bigger picture.

There are a number of different types of Timeline objects, from the AnimationTimeline
class to the TimelineGroup and ParallelTimeline classes. However, for animation
purposes, we predominantly utilize the Storyboard class, which extends the
ParallelTimeline and the TimelineGroup classes and adds animation-targeting
properties and methods for controlling the timeline. Let's first investigate the main
properties of the base Timeline class.

The Duration property specifies the time that is represented by the associated Timeline
object. However, a timeline can have repetitions, so a more accurate description of the
Duration property might be that it specifies the time of a single iteration of the associated
Timeline object.

The duration property is of type Duration, which contains a TimeSpan property that
contains the actual time that specifies the value of the duration. However, WPF includes a
type converter that enables us to specify this TimeSpan value in XAML in the following
formats, where the square brackets highlight optional segments:

Duration="[Days.]Hours:Minutes:Seconds[.FractionalSeconds]"
Duration="[Days.]Hours:Minutes"

However, the Duration structure also accepts other values in addition to the TimeSpan
duration. There is a value of Automatic, which is the default value for component
timelines that contain other timelines. In these cases, this value simply means that the
parent timeline's duration will be as long as the longest duration of its children timelines.
There is little purpose for us to explicitly use this value.

However, there is one further value that is very useful to us. The Duration structure also
defines a Forever property that represents an infinite period of time. We can use this value
to make an animation continue indefinitely, or more accurately, as long as its related View
is being displayed:

Duration="Forever"

Mastering Practical Animations Chapter 7

[312]

A Timeline object will stop playing when it reaches the end of its duration. If it has any
child timelines associated with it, then they will also stop playing at this point. However,
the natural duration of a timeline can be extended or shortened using other properties, as
we will see shortly.

Some timelines, such as the ParallelTimeline and Storyboard classes, are able to
contain other timelines and can affect their durations by setting their own values for the
Duration property, which will override those set by the child timelines. Let's alter an
earlier animation example from Chapter 5, Using the Right Controls for the Job to
demonstrate this:

<Rectangle Width="0" Height="0" Fill="Orange">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard Duration="0:0:2.5">
 <DoubleAnimation Storyboard.TargetProperty="Width" To="300.0"
 Duration="0:0:2.5" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="300.0"
 Duration="0:0:5" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
</Rectangle>

In this preceding example, we have a Rectangle object with its dimensions initially set to
zero. The Storyboard object contains two separate animation objects that will animate its
dimensions from zero to three hundred pixels. The animation object that will animate the
rectangle's width has a duration of two and a half seconds, while the animation object that
will animate the height has a duration of five seconds.

However, the containing Storyboard object has a duration of two and a half seconds and
so this will stop the timelines of the two child animation objects after two and a half
seconds, regardless of their declared durations. The result of this will be that after the
animation is complete, our Rectangle object will appear as a rectangle, instead of a square
with equal height and width values.

If we had changed the duration of the storyboard to match that of the longer child
animation, or changed that animation duration to match that of the shorter child animation,
then our animated shape would end as a square, rather than as a rectangle.

Mastering Practical Animations Chapter 7

[313]

Another way to adjust the assigned duration of an animation element is to set its
AutoReverse property. In effect, setting this property to True will usually double the
length of time that is specified by the Duration property, as the timeline will play in
reverse after it has completed its normal forwards iteration. Let's alter the storyboard from
the previous example to demonstrate this:

<Storyboard Duration="0:0:5">
 <DoubleAnimation Storyboard.TargetProperty="Width" To="300.0"
 Duration="0:0:2.5" AutoReverse="True" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="300.0"
 Duration="0:0:5" />
</Storyboard>

Now, both child timelines will have the same overall duration, as the first, previously
shorter, timeline has effectively been doubled in length. However, this will result in the first
timeline animating the width of the rectangle to three hundred pixels and then back to zero,
so it will be invisible when the animations have completed. Also note that we had to set the
parent storyboard duration to five seconds in order to see the difference in the child
timelines.

Note again that properties set on timelines that contain other timelines will affect the values
of those properties on the child timelines. As such, setting the AutoReverse property to
True on the parent timeline (the Storyboard object) will double the total length of time
that the child animations will run for; in our case, using the following example, the
rectangle will now be animated for ten seconds in total:

<Storyboard Duration="0:0:5" AutoReverse="True">
 <DoubleAnimation Storyboard.TargetProperty="Width" To="300.0"
 Duration="0:0:2.5" AutoReverse="True" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="300.0"
 Duration="0:0:5" />
</Storyboard>

The RepeatBehavior property is of type RepeatBehavior and can also affect the overall
duration of a timeline. Unlike the AutoReverse property, it can also shorten the overall
duration as well as lengthen it. Using the RepeatBehavior property, we can specify the
value in a number of ways using different behaviors.

Mastering Practical Animations Chapter 7

[314]

The most simple is to provide a count of how many times we would like to multiply the
original duration of the timeline. A pre-existing XAML type converter enables us to set the
repeat count in XAML by specifying an x after the count, as can be seen in the following
example. Note that we can also specify numbers with decimal places here, including values
less than one:

<Storyboard Duration="0:0:5" AutoReverse="True" RepeatBehavior="2x">
 <DoubleAnimation Storyboard.TargetProperty="Width" To="300.0"
 Duration="0:0:2.5" AutoReverse="True" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="300.0"
 Duration="0:0:5" />
</Storyboard>

In this example, the normal duration would be five seconds, but the AutoReverse property
is set to True and so that duration is doubled. However, the RepeatBehavior property is
set to 2x and this will multiply the doubled ten seconds to twenty seconds. This multiplier
value of two will be stored in the Count property of the RepeatBehavior structure.

An alternative to using the count option is to simply set the duration that we would like the
animation to last for. The same XAML syntax that is used to set the Duration property can
also be used to set the RepeatBehavior property. Similarly, the RepeatBehavior
structure also defines a Forever property that represents an infinite period of time and we
can use this value to make an animation continue indefinitely.

One further property that can affect the duration of an animation is the SpeedRatio
property. This value is multiplied by the other related duration properties and so can both
speed up and slow down the associated timeline. Let's update our example again to help to
explain this property now:

<Storyboard Duration="0:0:5" AutoReverse="True" SpeedRatio="0.5">
 <DoubleAnimation Storyboard.TargetProperty="Width" To="300.0"
 Duration="0:0:2.5" AutoReverse="True" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="300.0"
 Duration="0:0:5" SpeedRatio="2" />
</Storyboard>

Again, the normal duration here would be five seconds and the AutoReverse property is
set to True, so the duration is doubled. However, the SpeedRatio property is set to 0.5
and so the doubled duration is again doubled to twenty seconds. Note that a SpeedRatio
value of 0.5 represents half the normal speed and therefore twice the normal duration.

Mastering Practical Animations Chapter 7

[315]

The second child timeline also sets the SpeedRatio property, but it is set to 2 and so its
speed is doubled and its duration halved. As its specified duration is twice that of its
sibling timeline and its speed is now twice as fast, this has the effect of re-synchronizing the
two child animations, so that the two dimensions now grow together, as a square, rather
than as a rectangle.

There are two more speed-related properties that we can use to fine-tune our animations:
the AccelerationRatio and DecelerationRatio properties. These properties adjust the
proportion of time that the related animation takes to speed up and slow down
respectively. While this effect can be subtle at times, it can also give our animations that
professional touch when used correctly.

Acceptable values for both of these properties exist between zero and one. If both
properties are used together, then the total sum of their values must still remain between
zero and one. Failure to adhere to this rule will result in the following exception being
thrown at runtime:

The sum of AccelerationRatio and DecelerationRatio must be less than or
equal to one.

Entering values outside the acceptable range on either of these properties individually will
also result in an error, although doing this will cause a compilation error instead:

Property value must be between 0.0 and 1.0.

Let's look at an example that highlights the difference between the different values of these
two properties:

<StackPanel Margin="20">
 <StackPanel.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever" Duration="0:0:1.5"
 SpeedRatio="0.5" Storyboard.TargetProperty="Width">
 <DoubleAnimation Storyboard.TargetName="RectangleA"
 AccelerationRatio="1.0" From="0" To="300" />
 <DoubleAnimation Storyboard.TargetName="RectangleB"
 AccelerationRatio="0.8" DecelerationRatio="0.2"
 From="0" To="300" />
 <DoubleAnimation Storyboard.TargetName="RectangleC"
 AccelerationRatio="0.6" DecelerationRatio="0.4"
 From="0" To="300" />
 <DoubleAnimation Storyboard.TargetName="RectangleD"
 AccelerationRatio="0.5" DecelerationRatio="0.5"
 From="0" To="300" />
 <DoubleAnimation Storyboard.TargetName="RectangleE"

Mastering Practical Animations Chapter 7

[316]

 AccelerationRatio="0.4" DecelerationRatio="0.6"
 From="0" To="300" />
 <DoubleAnimation Storyboard.TargetName="RectangleF"
 AccelerationRatio="0.2" DecelerationRatio="0.8"
 From="0" To="300" />
 <DoubleAnimation Storyboard.TargetName="RectangleG"
 DecelerationRatio="1.0" From="0" To="300" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </StackPanel.Triggers>
 <Rectangle Name="RectangleA" Fill="#FF0000" Height="30" />
 <Rectangle Name="RectangleB" Fill="#D5002B" Height="30" />
 <Rectangle Name="RectangleC" Fill="#AB0055" Height="30" />
 <Rectangle Name="RectangleD" Fill="#800080" Height="30" />
 <Rectangle Name="RectangleE" Fill="#5500AB" Height="30" />
 <Rectangle Name="RectangleF" Fill="#2B00D5" Height="30" />
 <Rectangle Name="RectangleG" Fill="#0000FF" Height="30" />
</StackPanel>

This code defines a number of Rectangle objects in a StackPanel control, each with its
own associated DoubleAnimation element, that increases its width from zero to three
hundred pixels over one and a half seconds.

Here, we've used the Storyboard.TargetName and Storyboard.TargetProperty
properties to target the rectangles from a single EventTrigger to reduce the amount of
code in the preceding example. We'll cover these Attached Properties in detail shortly, but
for now, we'll just say that they are used to specify the target element and property to
animate.

Each animation targets a different rectangle and has different values set for the
AccelerationRatio and DecelerationRatio properties. The top rectangle's animation
has its AccelerationRatio property set to 1.0 and the animation for the bottom
rectangle has its DecelerationRatio property set to 1.0.

The animations for the rectangles in between have varying values. The higher the rectangle,
the higher the values for the AccelerationRatio property and the lower the values for
the DecelerationRatio property and the lower the rectangle, the lower the values of the
AccelerationRatio property and the higher the values for the DecelerationRatio
property.

Mastering Practical Animations Chapter 7

[317]

When this example is run, we can clearly see the differences between the various ratio
values. At one point near the start of each iteration, we can see that the top rectangles that
are animated with higher AccelerationRatio values have not grown in size as much as
the lower rectangles that are animated with higher DecelerationRatio values; however,
all rectangles reach 300 pixels at approximately the same time:

Another useful property in the Timeline class is the BeginTime property. As the name
suggests, it sets the time to begin the animation; it can be thought of as a delay time that
delays the start of its animation with relation to parent and sibling timelines.

The default value of this property is zero seconds and when it is set with a positive value,
the delay occurs just once at the start of the timeline and is not affected by other properties
that may be set on it. It is often used to delay the start of one or more animations until
another animation has completed. Let's adjust our earlier example again to demonstrate
this:

<Rectangle Width="0" Height="1" Fill="Orange">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>

Mastering Practical Animations Chapter 7

[318]

 <Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="Width" To="300.0"
 Duration="0:0:2" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="300.0"
 Duration="0:0:2" BeginTime="0:0:2" />
 <DoubleAnimation Storyboard.TargetProperty="Width" To="0.0"
 Duration="0:0:2" BeginTime="0:0:4" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="0.0"
 Duration="0:0:2" BeginTime="0:0:4" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
</Rectangle>

In this example, we have a single pixel high rectangle with a width that grows outward
until it is three hundred pixels wide and then grows vertically until it is three hundred
pixels high. At that point, its dimensions equally reduce in size until the shape shrinks to
nothing.

This is achieved by delaying the last three animations while the width-increasing animation
runs and then delaying the last two animations while the height-increasing animation runs.
The BeginTime properties of the last two animations are set to the same value, so that they
both start and run in synchronization with each other.

The last really useful timeline property is the FillBehavior property, which specifies
what should happen to the data bound property value when the timeline reaches the end of
its total duration, or its fill period. This property is of type FillBehavior and has just two
values.

If we set this property to a value of HoldEnd, the data bound property value will remain at
the final value that was reached just before the animation ended. Conversely, if we set this
property to a value of Stop, which is the default value, the data bound property value will
revert to the value that the property originally had before the animation started. Let's
illustrate this with a simple example:

<StackPanel Margin="20">
 <StackPanel.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard Duration="0:0:1.5" SpeedRatio="0.5"
 Storyboard.TargetProperty="Opacity">
 <DoubleAnimation Storyboard.TargetName="RectangleA" To="0.0"
 FillBehavior="HoldEnd" />
 <DoubleAnimation Storyboard.TargetName="RectangleB" To="0.0"
 FillBehavior="Stop" />

Mastering Practical Animations Chapter 7

[319]

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </StackPanel.Triggers>
 <Rectangle Name="RectangleA" Fill="Orange" Height="100"
 HorizontalAlignment="Stretch" Margin="0,0,0,20" />
 <Rectangle Name="RectangleB" Fill="Orange" Height="100"
 HorizontalAlignment="Stretch" />
</StackPanel>

In this example, the difference between the two FillBehavior enumeration instances is
clearly demonstrated. We have two rectangles of identical size that have identical timelines
set up to animate their Opacity property values, with the exception of their
FillBehavior property values.

Both rectangles fade from being opaque to being invisible in the same amount of time, but
once the two timelines are complete, the rectangle with the FillBehavior property set to
Stop immediately becomes visible again, as it was prior to the start of the animation, while
the other with the FillBehavior property set to HoldEnd remains invisible, as it was at
the end of the animation.

While this covers the main properties that are exposed by the Timeline class directly, there
are a few more properties that are declared by many of the animation classes that extend
the Timeline class and are essential to fully understand. They are the From, By and To
properties, which specify the start and end points of the animations.

Because the animation classes generate property values, there are different types of
animation classes for different property types. For example, the animation class that
generates Point values is called the PointAnimation class and all of the normal
animation classes follow the same naming pattern, using the name of the related type in the
form of <TypeName>Animation, for example ColorAnimation.

The normal animation classes, often referred to as the From, By and To animations, usually
require two values to be specified, although one of these can sometimes be implicitly
provided. The relevant property will then be animated along a path of automatically
interpolated values between the two specified values.

It is most common to provide a starting value using the From property and an ending value
using the To property. However, we can also specify a single starting, ending, or offset
value and the second value will be taken from the current value of the animated property.
We can set the offset value using the By property and this represents the exact amount the
property value will change over the duration.

Mastering Practical Animations Chapter 7

[320]

Specifying values for these different properties can have dramatically different effects on
the resulting animations. Using the From property alone will start the animation at the
desired value and will animate the property until it reaches the property's base value.

Using the To property alone will start animating the property from its current value and
end at the specified value. Using only the By property will animate the property from its
current value until the sum of that value with the specified offset amount has been reached.

Combinations of the three properties can be used to target just the right range of property
values. Setting the From and By properties will start the animations from the value
specified by the From property and animate the property until the offset specified by the By
property has been reached.

Setting the From and To properties together will start the animations from the value
specified by the From property and animate the property until the value specified by the To
property. As the By and To properties both specify the ending value of the animation, the
value specified by the By property will be ignored if they are both set on an animation
element.

While these more common animations use one or two of the From, By, and To properties
together to specify the range of values of the related property to be animated, there is
another way to specify the target values. Let's now take a look at key-frame animations.

Introducing key-frames
Key-frame animations enable us to do a number of things that we cannot do with the From,
By, and To animations. Unlike those animations, with key-frame animations, we are able to
specify more than two target values and animate objects in discrete steps that cannot
normally be animated. As such, there are more <TypeName>AnimationUsingKeyFrames
classes than <TypeName>Animation classes, for
example: RectAnimationUsingKeyFrames, SizeAnimationUsingKeyFrames.

Each <TypeName>AnimationUsingKeyFrames class has a KeyFrames property that we
populate with key-frames to specify various values that must be passed during the
animation. Each key-frame has a KeyTime and a Value property to specify the value and
the relative time that it should be reached.

Mastering Practical Animations Chapter 7

[321]

If no key-frame is declared with a key time of zero seconds, the animation will start from
the relevant property's current value. The animation will order the key-frames by the
values of their KeyTime property, rather than the order that they were declared in, and will
create transitions between the various values according to their interpolation methods,
which we'll find out about momentarily.

Note that the KeyTime property is of type KeyTime and this enables us to set it using types
of values, other than TimeSpan values. We are also able to specify percentage values, which
determine the percentage of the specified animation duration that each key-frame will be
allotted. Note that we need to use cumulative values, so that the final key-frame key time
value will always be 100%.

Alternatively, there are a number of special values that we can use. When we want an
animation with a constant velocity, regardless of the specified values, we can specify the
Paced value for each of the key-frames. This takes the change between each key-frame's
value into consideration before spacing them across the duration of the parent timeline and
creating a smooth, even transition.

In contrast to this method, we can also specify the Uniform value for each key-frame,
which basically spaces the key-frames out evenly across the duration of the parent
animation. To do this, it simply counts the number of key-frames and divides that number
by the total duration length, so that each key-frame will last for the same amount of time.

There are different kinds of key-frames for different
<TypeName>AnimationUsingKeyFrames classes and there are also different kinds of
interpolation methods used. The naming convention of these key-frames follows the
format, <InterpolationMethod><TypeName>KeyFrame, for
example: LinearDoubleKeyFrame.

There are three kinds of interpolation methods. The first is Discrete, which performs no
interpolation and simply jumps from one value to another. This method is useful for setting
bool or object values.

The next method is Linear, which performs a linear interpolation between the key-frame's
value and the previous key-frame's value. This means that the animation will appear
smooth, but speed up and slow down if your key-frame times are not evenly spaced out.

The last and most complicated interpolation method is Spline, but it also provides the
user with the most control over the animation timing. It adds a further property named
KeySpline, which enables us to specify two control points on a Bezier curve that extends
from 0.0,0.0 to 1.0,1.0. The first control point affects the first half of the curve, while
the second point affects the second half.

Mastering Practical Animations Chapter 7

[322]

Using these two control points, we can adjust the speed of the animation over its duration.
As an example, using the first control point set to 0.0,1.0 and the second set to
1.0,0.0 will cause maximum distortion to the original linear curve and result in an
animation that will quickly accelerate, before slowing almost to a stop in the middle and
then dramatically speeding up again at the end.

With these two points, we can have full control over the speed of value change between
each pair of key-frame values. This type of interpolation is most useful when attempting to
create animations that are more realistic looking. Note that we are free to mix and match
key-frames with different interpolation methods within each key-frame animation.

As an example, let's say that we wanted to animate a Point element. In this case we'd need
to use the PointAnimationUsingKeyFrames class and would then have a choice of key-
frame classes that represent the different interpolation methods. With this example, we
could use any combination of the DiscretePointKeyFrame, LinearPointKeyFrame, and
SplinePointKeyFrame classes.

Note that, as the KeyFrames property is set as the name input parameter in the
ContentPropertyAttribute attribute that forms part of the declared class signature in
each of the <TypeName>AnimationUsingKeyFrames classes, we do not need to explicitly
declare this property in XAML and can declare the various key-frames directly inside these
elements as shown in the following code:

<Ellipse Width="100" Height="100" Stroke="Black" StrokeThickness="3">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="Yellow" Offset="0" />
 <GradientStop Color="Orange" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever"
 Storyboard.TargetProperty="Fill.GradientOrigin">
 <PointAnimationUsingKeyFrames>
 <DiscretePointKeyFrame Value="0.5, 0.5" KeyTime="0:0:0" />
 <LinearPointKeyFrame Value="1.0, 1.0" KeyTime="0:0:2" />
 <SplinePointKeyFrame KeySpline="0,0.25 0.75,0" Value="1.0, 0.0"
 KeyTime="0:0:4" />
 <LinearPointKeyFrame Value="0.0, 0.0" KeyTime="0:0:5" />
 <SplinePointKeyFrame KeySpline="0,0.75 0.25,0" Value="0.5, 0.5"
 KeyTime="0:0:8" />
 </PointAnimationUsingKeyFrames>
 </Storyboard>

Mastering Practical Animations Chapter 7

[323]

 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
</Ellipse>

In this example, we declare an Ellipse shape with its Fill property set to an instance of
the RadialGradientBrush class. The brush has a yellow center and is orange around the
edges. Note that these brushes have a property named GradientOrigin that specifies the
center point of the gradient and defaults to the point 0.5,0.5. In this example, we animate
this property, which has a similar effect to moving a light source around a 3D ball:

We use an EventTrigger with the Loaded event to start our animation and set the
RepeatBehavior property to Forever on the associated storyboard. As mentioned, we set
the TargetProperty property to the GradientOrigin property of the brush that is set as
the Fill property.

Inside the storyboard, we declare a PointAnimationUsingKeyFrames element and
directly inside it, we declare a number of various
<InterpolationMethod><Type>KeyFrame objects. As mentioned, we do not need to
explicitly declare the KeyFrames property in order to declare these key-frame elements
within it.

Note that the DiscretePointKeyFrame element that is used here is entirely optional and
would not change anything if removed. This is because the point 0.5,0.5 is both the
starting value of the animation and default value of the gradient brush and also the ending
value of the animation. Furthermore, if we omit a zero time key-frame, one will be
implicitly added for us with this value.

Mastering Practical Animations Chapter 7

[324]

Next, we declare a LinearPointKeyFrame element, that will animate the gradient origin
from the point 0.5,0.5 to the point 1.0,1.0 in a linear, even fashion. Following that, we
have a SplinePointKeyFrame element that will animate the gradient origin from the
previous point to the point 1.0,0.0. Note the KeySpline property that adjusts the speed
of the animation as it progresses.

From there, we use another LinearPointKeyFrame element to smoothly and evenly
transition to the point 0.0,0.0 over one second. Finally, we use a second
SplinePointKeyFrame element to animate the gradient origin back to the center of the
circle and its starting position, taking the last three seconds of the total duration.

When this example is run, we can clearly see it animating the gradient origin point evenly
during the periods of the two LinearPointKeyFrame elements and changing the speed
during the periods of the two SplinePointKeyFrame elements.

Telling stories
While the various animation classes that extend the Timeline class can be used to animate
control properties directly in code, in order to declare and trigger animations using XAML
alone, we need to use the Storyboard class. This is what is known as a container timeline,
as it extends the abstract TimelineGroup class that enables it to contain child timelines.

Another container timeline class that the Storyboard class extends is the
ParallelTimeline class and these classes enable us to group child timelines and to set
properties on them as a group. When creating more complex animations, if all we need to
do is to delay the start of a group of child timelines, we should use the ParallelTimeline
class rather than the Storyboard class, as it is more efficient.

We could rewrite our earlier BeginTime example to use a ParallelTimeline element to
delay the start of our last two timelines. Let's see what that might look like:

<Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="Width" To="300.0"
 Duration="0:0:2" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="300.0"
 Duration="0:0:2" BeginTime="0:0:2" />
 <ParallelTimeline BeginTime="0:0:4">
 <DoubleAnimation Storyboard.TargetProperty="Width" To="0.0"
 Duration="0:0:2" />
 <DoubleAnimation Storyboard.TargetProperty="Height" To="0.0"
 Duration="0:0:2" />
 </ParallelTimeline>

Mastering Practical Animations Chapter 7

[325]

</Storyboard>

As the Storyboard class is a Timeline object, it also has the same properties as the
various animation objects. One additional property that it inherits from the
ParallelTimeline class is the SlipBehavior property. This property is only really
useful when we want to synchronize an animation timeline with the playback of a
MediaTimeline element, but it's worth knowing about.

This property is of the enumeration type SlipBehavior and it only has two members. A
value of Grow specifies that we do not need our animation timelines to be synchronized
with our media timeline(s) and is the default value of this property.

Conversely, a value of Slip indicates that we want our animation timelines to slip, either
forwards or backwards, whenever necessary in order to keep them in sync with the playing
media. If the media takes time to load when using this setting, then the animation timelines
within the storyboard will wait until the media is ready and continue at that point.

In addition to the properties that have been inherited from the various base classes, the
Storyboard class also declares three important Attached Properties that are essential for
targeting animations to individual UI elements and/or their properties.

The Storyboard.Target Attached Property specifies the UI control that should be
animated, although setting this property alone is not enough, as it does not specify the
target property. This property is of type object, although it can only be used with objects
of type DependencyObject.

In order to use this property, we need to specify a binding path that references the target UI
control. If the target element extends the FrameworkElement or
FrameworkContentElement classes, then one way would be to name the target element
and to use an ElementName binding to reference it:

Storyboard.Target="{Binding ElementName=TargetControlName}"

Most UI elements extend one of these two classes that declare the Name property. However,
if we provide a name for the target control, then there is a simpler way to target it. Instead
of using the Storyboard.Target property, we could use the Storyboard.TargetName
Attached Property to specify the target element using just their declared name, without any
binding:

Storyboard.TargetName="TargetControlName"

Mastering Practical Animations Chapter 7

[326]

We do not always need to specify this property value, as on occasion, the target element
can be worked out implicitly. If the relevant storyboard was started with a
BeginStoryboard element, the UI element that declared it will be targeted. Additionally,
if the relevant storyboard is a child of another timeline, then the target of the parent
timeline will be inherited.

The most important property that the Storyboard class declares is the TargetProperty
Attached Property. We use this property to specify which property we want to animate on
the target element. Note that in order for this to work, the target property must be a
Dependency Property.

Occasionally, we may want to target objects that do not extend either of the framework
classes mentioned earlier; in WPF, we are also able to target freezable classes that extend
the Freezable class. In order to target one of these classes in XAML, we need to specify
the name of the object using the x:Name directive instead, as they have no Name property.

As a side note, WPF classes that declare their own Name property actually map the name
value through to the x:Name directive, which is part of the XAML specification. In these
cases, we are free to use either of these to register a name for an element, but we must not
set both.

Note that unnamed elements can still be referenced by our animations, although they need
to be indirectly referenced. Instead of referencing them directly, we need to specify the
name of the parent property or freezable object and then chain properties in the
TargetProperty Attached Property until we reach the desired element. We used this
method in the last example of the previous section:

Storyboard.TargetProperty="Fill.GradientOrigin"

In this case, we reference the Fill property, which is of type RadialGradientBrush, and
then we chain to the GradientOrigin property of the brush from there. Note that if we
had used an instance of the SolidColorBrush class here instead, this reference would fail,
because there is no GradientOrigin property in that brush. However, while the
animation would fail to work, this would not cause any errors to be raised.

Controlling storyboards
In order to start a storyboard in XAML, we need to use a BeginStoryboard element. This
class extends the TriggerAction class and if you remember, that is the type that we need
to use in the TriggerActionCollection of the EventTrigger class and the
TriggerBase.EnterActions and TriggerBase.ExitActions properties.

Mastering Practical Animations Chapter 7

[327]

We specify the storyboard to use with the BeginStoryboard element by setting it to the
Storyboard property in code. When using XAML, the Storyboard property is implicitly
set to the storyboard that is declared within the BeginStoryboard element.

The BeginStoryboard action is responsible for connecting the animation timelines with
the animation targets and their targeted properties and is also responsible for starting the
various animation timelines within its storyboard. It does this by calling the Begin method
of the associated Storyboard object, once its parent's trigger condition has been met.

If an already running storyboard is asked to begin again, either indirectly, using a
BeginStoryboard action, or directly, using the Begin method, what happens will depend
upon the value set by the HandoffBehavior property.

This property is of the enumeration type HandoffBehavior and has two values. The
default value is SnapshotAndReplace and this will renew the internal clocks and
essentially have the effect of replacing one copy of the timeline with another. The other
value is more interesting: the Compose value will retain the original clocks when restarting
the animation and append the new animation after the current one, performing some
interpolation between them, resulting in a smoother join.

One problem with this method is that the retained clocks will continue to use system
resources and this can end in memory problems if not handled correctly. However, this
method produces much smoother and more natural and fluid animations that can be worth
the extra resources. This is best demonstrated with a small example:

<Canvas>
 <Rectangle Canvas.Top="200" Canvas.Left="25" Width="100" Height="100"
 Fill="Orange" Stroke="Black" StrokeThickness="3">
 <Rectangle.Style>
 <Style TargetType="{x:Type Rectangle}">
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:2"
 Storyboard.TargetProperty="(Canvas.Top)" To="0" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:2"
 Storyboard.TargetProperty="(Canvas.Top)" To="200" />

Mastering Practical Animations Chapter 7

[328]

 </Storyboard>
 </BeginStoryboard>
 </Trigger.ExitActions>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Rectangle.Style>
 </Rectangle>
 <Rectangle Canvas.Top="200" Canvas.Left="150" Width="100" Height="100"
 Fill="Orange" Stroke="Black" StrokeThickness="3">
 <Rectangle.Style>
 <Style TargetType="{x:Type Rectangle}">
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:2"
 Storyboard.TargetProperty="(Canvas.Top)" To="0" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <BeginStoryboard HandoffBehavior="Compose">
 <Storyboard>
 <DoubleAnimation Duration="0:0:2"
 Storyboard.TargetProperty="(Canvas.Top)" To="200" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.ExitActions>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Rectangle.Style>
 </Rectangle>
</Canvas>

In this example, we have two rectangles, each with its own animation. The only difference
between them is that the BeginStoryboard element that starts the animation for the right
rectangle has a HandoffBehavior of Compose, while the other uses the default value of
SnapshotAndReplace.

When the example is run, each rectangle will move upwards when the mouse cursor is
placed over it and move back downwards when the cursor is moved away from it. If we
keep the mouse cursor within the bounds of each rectangle, moving it up to the top of the
screen with the rectangle and then move the cursor away to let the rectangle fall, the two
animations will appear identical.

Mastering Practical Animations Chapter 7

[329]

However, if we move the mouse cursor from side to side across the two rectangles, we will
start to see a difference between the two animations. We'll see that as the cursor enters the
bounds of each rectangle, they each start their upwards movement. But once the cursor
leaves the rectangle bounds, we see the difference.

The rectangle on the left, with the default value of SnapshotAndReplace, will stop moving
up and immediately begin its downwards animation, while the other rectangle will
continue to move upwards for a short time before commencing its downwards animation.
This results in a much smoother, more natural looking transition between the two
animations.

The difference between these two handoff behaviors though, is most clearly demonstrated
by simply placing the mouse cursor on one of the rectangles and leaving it there. Doing this
to the rectangle on the left will cause the rectangle to move upwards until the mouse cursor
is no longer within its bounds and then it will immediately begin to move downwards
again.

However, as the mouse cursor will then be within the bounds of the rectangle again, it will
begin the upwards animation once more. This will cause the rectangle to move away from
the mouse cursor again and so we will end with a repetitive loop of this behavior and it will
result in what looks like a quick shaking, or stuttering, of the rectangle just above the
position of the mouse.

On the other hand, the rectangle on the right, with the HandoffBehavior of Compose, will
move upwards until the mouse cursor is no longer within its bounds, but will then
continue to move upwards for a short time before starting to move downwards again. Once
more, this creates a far smoother animation and will result in the rectangle bouncing gently
above the mouse cursor, in sharp contrast to the other, stuttering rectangle.

There are several related TriggerAction derived classes that are suffixed with the word
Storyboard and enable us to control various aspects of the related Storyboard element.
By specifying the Name property value of the BeginStoryboard element in the
BeginStoryboardName property of the other actions, we are able to further control the
running storyboard.

We can use the PauseStoryboard element to pause a running storyboard and the
ResumeStoryboard to resume a paused storyboard. The PauseStoryboard element does
nothing if the related storyboard is not running and, similarly, the ResumeStoryboard
action does nothing if the related storyboard is not already paused. Therefore, a storyboard
cannot be started with a ResumeStoryboard trigger action.

Mastering Practical Animations Chapter 7

[330]

The StopStoryboard action will stop a running storyboard, but does nothing if the related
storyboard is not already running. Finally, there is a RemoveStoryboard trigger action that
will remove a storyboard when its parent's trigger condition has been met. As storyboards
consume resources, we should remove them when they are no longer required.

For example, if we use an EventTrigger with the Loaded event to start a timeline that has
its RepeatBehavior property set to Forever, then we should use another EventTrigger
element with a RemoveStoryboard action in the Unloaded event to remove the
storyboard. This is somewhat analogous to calling the Dispose method on an
IDisposable implementation.

Note that it is essential to remove a storyboard that was started by a BeginStoryboard
action with its HandoffBehavior property set to Compose, as it could end with many
internal clocks being instantiated, but not disposed of. Removing the storyboard will also
result in the internally used clocks being disposed of. Let's see a practical example of how
we might use these elements:

<StackPanel TextElement.FontSize="14">
 <TextBox Text="{Binding Name, UpdateSourceTrigger=PropertyChanged}"
 Margin="20">
 <TextBox.Effect>
 <DropShadowEffect Color="Red" ShadowDepth="0" BlurRadius="0"
 Opacity="0.5" />
 </TextBox.Effect>
 <TextBox.Style>
 <Style TargetType="{x:Type TextBox}">
 <Style.Triggers>
 <DataTrigger Binding="{Binding IsValid}" Value="False">
 <DataTrigger.EnterActions>
 <BeginStoryboard Name="GlowStoryboard">
 <Storyboard RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.
 TargetProperty="Effect.(DropShadowEffect.BlurRadius)"
 To="25" Duration="0:0:1.0" AutoReverse="True" />
 </Storyboard>
 </BeginStoryboard>
 </DataTrigger.EnterActions>
 </DataTrigger>
 <MultiDataTrigger>
 <MultiDataTrigger.Conditions>
 <Condition Binding="{Binding IsValid}" Value="False" />
 <Condition Binding="{Binding IsFocused,
 RelativeSource={RelativeSource Self}}" Value="True" />
 </MultiDataTrigger.Conditions>
 <MultiDataTrigger.EnterActions>
 <PauseStoryboard BeginStoryboardName="GlowStoryboard" />

Mastering Practical Animations Chapter 7

[331]

 </MultiDataTrigger.EnterActions>
 </MultiDataTrigger>
 <Trigger Property="IsFocused" Value="True">
 <Trigger.EnterActions>
 <PauseStoryboard BeginStoryboardName="GlowStoryboard" />
 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <ResumeStoryboard BeginStoryboardName="GlowStoryboard" />
 </Trigger.ExitActions>
 </Trigger>
 <DataTrigger Binding="{Binding IsValid}" Value="True">
 <DataTrigger.EnterActions>
 <StopStoryboard BeginStoryboardName="GlowStoryboard" />
 </DataTrigger.EnterActions>
 </DataTrigger>
 <EventTrigger RoutedEvent="Unloaded">
 <EventTrigger.Actions>
 <RemoveStoryboard BeginStoryboardName="GlowStoryboard" />
 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
 </Style>
 </TextBox.Style>
 </TextBox>
 <TextBox Margin="20 0" />
</StackPanel>

This example has two textboxes, with the lower one existing solely to enable us to remove
focus from the first one. The first textbox is data bound to a Name property in our View
Model. Let's imagine that we have some validation code that will update a property named
IsValid when the Name property is changed. We'll cover validation in depth in Chapter 9,
Implementing Responsive Data Validation, but for now, let's keep it simple:

private string name = string.Empty;
private bool isValid = false;

...

public string Name
{
 get { return name; }
 set
 {
 if (name != value)
 {
 name = value;
 NotifyPropertyChanged();

Mastering Practical Animations Chapter 7

[332]

 IsValid = name.Length > 2;
 }
 }
}

public bool IsValid
{
 get { return isValid; }
 set { if (isValid != value) { isValid = value;
 NotifyPropertyChanged(); } }
}

Here, we simply verify that the Name property has a value that has three or more characters
in it. The basic idea in this example is that we have an animation that highlights the fact
that a particular form field requires a valid value.

It could be a shaking, or growing and shrinking of the form field, or the animation of an
adjacent element, but in our case, we have used a DropShadowEffect element to create a
glowing effect around it.

In the Triggers collection of our style, we have declared a number of triggers. The first
one is a DataTrigger and it data binds to the IsValid property in the View Model and
uses the BeginStoryboard trigger action element named GlowStoryboard to make the
glowing effect around the textbox grow and shrink when the property value is false.

While animations are great at attracting the eye, they can also be quite distracting. Skipping
over the MultiDataTrigger momentarily, our animation will therefore be paused when
the textbox is focused, so that the user can enter the details without distraction. We achieve
this by declaring a PauseStoryboard action in the trigger with the condition that the
IsFocused property is true.

Using the EnterActions collection of the trigger ensures that the PauseStoryboard
action is run as the IsFocused property is set to true. Declaring the ResumeStoryboard
action in the ExitActions collection of the trigger ensures that it will be run as the
IsFocused property is set to false, or in other words, when the control loses focus.

When the user has entered a value, our View Model validates whether the provided value
is indeed valid and, if so, it sets the IsValid property to true. In our example, we just
verify that the entered string contains three or more characters in order for it to be valid.
Setting the UpdateSourceTrigger property to PropertyChanged on the binding ensures
this validation occurs on each keystroke.

Mastering Practical Animations Chapter 7

[333]

Our example uses a DataTrigger to data bind to this property and when it is true, it
triggers the StopStoryboard action, which stops the storyboard from running any further.
As the FillBehavior property of our storyboard is not explicitly set, it will default to the
Stop value and the animated property value will return to the original value that it had
prior to being animated.

However, what should happen if the user entered three or more characters and then deleted them?
The data trigger would trigger the StopStoryboard action and the storyboard would be
stopped. As they deleted the characters and the IsValid property would be set to false
and the condition of the first DataTrigger would then trigger the initial
BeginStoryboard action to start the storyboard again.

But this would occur while the focus was still on the textbox and while the animation on
the effect should not be running. It is for this reason that we declared the
MultiDataTrigger element that we skipped over earlier. In this trigger, we have two
conditions. One is that the IsFocused property should be true and for this alone, we
could have used a MultiTrigger instead.

However, the other condition requires that we data bind to the IsValid property from the
View Model and for that, we need to use the MultiDataTrigger element. So, this trigger
will run its PauseStoryboard action when the textbox is focused and as soon as the data
bound value becomes invalid, or in other words, as the user deletes the third character.

The triggers are evaluated from top to bottom in the declared order in the XAML and as the
user deletes the third character, the first trigger begins the animation. The
MultiDataTrigger has to be declared after the first trigger, so that the storyboard will be
started before it pauses it. In this case, the glow effect will start again once the user has
moved focus from the first textbox as required.

Finally, this example demonstrates how we can use a RemoveStoryboard trigger action to
remove the storyboard when it is no longer needed, freeing up its resources. The usual way
to do this is by utilizing an EventTrigger in the Unloaded event of the relevant control.

While these are the only trigger action elements that control the running state of their
associated storyboard elements, there are a further three actions that can control other
aspects of, or set other properties of the storyboard.

Mastering Practical Animations Chapter 7

[334]

The SetStoryboardSpeedRatio trigger action can set the SpeedRatio of the associated
storyboard. We specify the desired ratio in its SpeedRatio property and this value will be
applied when the action's related trigger condition is met. Note that this element can only
work on a storyboard that has already been started, although it can work at any time after
this point.

The SkipStoryboardToFill trigger action will move the current position of a storyboard
to its fill period, if it has one. Remember that the FillBehavior property determines what
should happen during the fill period. If the storyboard has child timelines, then their
positions will also be forwarded to their fill periods at this point.

Last, but not least, there is a SeekStoryboard trigger action, which enables us to move the
current position of storyboard to a location, relative to the position specified by the Origin
property, which has a begin time of zero seconds by default. When declaring the
SeekStoryboard action, we specify the desired seek position in the Offset property and
optionally set the Origin property.

The Offset property is of type TimeSpan and we can use the time notation highlighted
earlier to specify its value in XAML. The Origin property is of type TimeSeekOrigin and
we can specify one of two values.

The first is the default value of BeginTime, which places the origin at the start of the
timeline, while the second is Duration, which places it at the end of a single iteration of the
timeline's natural duration. Note that the various speed ratio values are not taken into
consideration when seeking through a timeline's duration.

That completes our look at the range of trigger actions that we can use to control our
storyboards. Each of these trigger actions have corresponding methods in the Storyboard
class that they call when their related trigger conditions are met.

Easing functions
When declaring animations with WPF, we are able to utilize a powerful capability that
helps us to define more specialized animations. While we normally provide a start and end
value for our animations and let WPF interpolate the intermediate values, there is a way
that we can affect this interpolation process.

There are a number of mathematical functions that provide complex animation paths and
are known as easing functions. For example, these can accurately replicate the movement of
a spring, or the bounce of a ball.

Mastering Practical Animations Chapter 7

[335]

We can simply declare the appropriate easing function within the EasingFunction
property of the animation. Each easing function extends the EasingFunctionBase class
and has its own specific properties. For example, the BounceEase element provides
Bounces and Bounciness properties, while the ElasticEase class declare the
Oscillations and Springiness properties.

All easing functions inherit the EasingMode property from the base class. This property is
of the enumeration type EasingMode and gives us three options. The EaseIn option
follows the normal mathematical formula associated with each easing function. The
EaseOut option uses the inverse of the mathematical formula.

The EaseInOut option uses the standard formula for the first half and the inverse formula
for the second half. While not strictly true, this can be somewhat thought of as EaseIn
affects the start of the animation, EaseOut affects the end of the animation, and EaseInOut
affects both the start and the end of the animation. Let's see an example of a bouncing ball
animation to demonstrate this ability:

<Canvas>
 <Ellipse Width="50" Height="50" Fill="Orange" Stroke="Black"
 StrokeThickness="3">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <Storyboard Storyboard.TargetProperty="(Canvas.Top)">
 <DoubleAnimation Duration="00:00:3" From="0" To="200">
 <DoubleAnimation.EasingFunction>
 <BounceEase EasingMode="EaseOut" Bounces="10"
 Bounciness="1.5" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 <Storyboard Storyboard.TargetProperty="(Canvas.Left)">
 <DoubleAnimation Duration="00:00:3.5" From="0" To="200"
 DecelerationRatio="0.2" />
 </Storyboard>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
 <Line Canvas.Top="250" Canvas.Left="25" X1="0" Y1="1.5" X2="225" Y2="1.5"
 Stroke="Black" StrokeThickness="3" />
</Canvas>

Mastering Practical Animations Chapter 7

[336]

Here, we have a Canvas panel that contains two shapes: an ellipse and a line. The line is
simply to give the impression of the ground. The Ellipse element defines some basic
appearance properties and then an EventTrigger element that starts our eased animation
when the shape object is loaded. We have an outer Storyboard element that is set to
repeat forever and contains two inner storyboards.

The first of these inner storyboards targets the Canvas.Top Attached Property using the
Storyboard.TargetProperty, while the second targets its Canvas.Left Attached
Property. Note that we do not need to specify the Storyboard.Target property value
here, as the storyboard resides within the target element, which will be implicitly set as the
target for us. Also, remember that we need to wrap the Attached Property name with its
class name in brackets for this to work.

The first storyboard is responsible for the vertical movement of our ball and so this is the
animation that we want to use the BounceEase function with. In order to utilize this
functionality, we simply declare the BounceEase object within the
DoubleAnimation.EasingFunction property and set the desired property values.

The Bounces property determines how many times the ball should bounce, or rebound off
the lower extent of the animation. Note that this does not include the final half-bounce that
this easing function will perform. The Bounciness property specifies how bouncy the ball
is. Strangely, the higher this value is, the less bouncy the ball will be. Also note that this
value must be positive.

As physics determines that the horizontal velocity of the ball should remain constant for the
most part, we do not need to apply an easing function to the second animation. Instead, we
have added a small value for its DecelerationRatio property, which nicely simulates the
sideways friction on the ball.

As can be seen, it is very easy to take advantage of these mathematical formulae to greatly
increase the movement of our animations. While there is not enough space in this book for
us to cover all of these easing functions, it is well worth investigating them yourselves. Let's
take a look at another example, to see how we can simulate the movement of a spring using
the ElasticEase class:

<Rectangle Canvas.Top="250" Canvas.Left="25" Width="25" Height="50"
 Fill="Orange" Stroke="Black" StrokeThickness="3">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <Storyboard Storyboard.TargetProperty="Height">
 <DoubleAnimation Duration="00:00:3" From="50" To="200">

Mastering Practical Animations Chapter 7

[337]

 <DoubleAnimation.EasingFunction>
 <ElasticEase EasingMode="EaseOut" Oscillations="6"
 Springiness="2" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
</Rectangle>

In this example, we have a thin Rectangle element that simulates the movement of a
coiled spring using an ElasticEase function. The Oscillations property specifies the
number of times that the rectangle will grow and shrink over the lifetime of the animation
effect and the Springiness property determines the stiffness of the spring, where larger
values equal more springiness.

While the two demonstrated easing functions are rather specialized and unsuitable to use
in many cases, the vast majority of the remaining functions are all variations on standard
circular, or exponential curves, or curves that use the formula f(t) = tn, where n is either
determined by the exact easing function used, or by the Power property of the PowerEase
function.

For example, the QuadraticEase function uses the formula f(t) = t2, the CubicEase
function uses the formula f(t) = t3, the QuarticEase function uses the formula f(t) = t4, the
QuinticEase function uses the formula f(t) = t5, while the PowerEase function uses the
formula f(t) = tn, where n is determined by its Power property.

Apart from these variations of the standard acceleration/deceleration curve, there is one
final useful easing function named BackEase. This has the effect of overshooting its
starting or ending From or To values, dependent upon the value of the EasingMode
property, and then reversing back to it. This is one of the more usable easing functions, so
let's see an example of a TextBox element sliding on screen:

<Canvas ClipToBounds="True">
 <TextBox Canvas.Top="50" Canvas.Left="-150" Width="150" Height="25">
 <TextBox.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard Storyboard.TargetProperty="(Canvas.Left)"
 Duration="00:00:2" RepeatBehavior="Forever">
 <DoubleAnimation Duration="00:00:1" From="-150" To="50">
 <DoubleAnimation.EasingFunction>
 <BackEase EasingMode="EaseOut" Amplitude="0.75" />

Mastering Practical Animations Chapter 7

[338]

 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBox.Triggers>
 </TextBox>
</Canvas>

In this example, we start with a Canvas object that has its ClipToBounds property set to
true. This ensures that elements that are outside the bounds of the canvas will not be
visible. Inside the canvas, we have declared a TextBox control that is initially placed totally
outside the bounds of the canvas and so it will be invisible.

When the control is loaded, the EventTrigger element will start the animation that targets
the Canvas.Left Attached Property. Note that the duration on the storyboard is one
second longer than the duration on the animation and so the storyboard will wait for
one second after the animation has completed before restarting. This gives us time to
appreciate the effect of the applied easing function.

The animation will slide the textbox to its ending position from its initial off-screen
position. By using the BackEase function, the textbox will slightly slide past its ending
position and then reverse back into it. The amount past its ending position that it will slide
to is determined by the value of its Amplitude property, with higher values extending the
overshoot distance.

While we have only discussed using these easing functions with From, By and To
animations so far, it is also possible to use them with key-frame animations as well. There
are a number of classes that follow the Easing<Type>KeyFrame naming convention, such
as the EasingColorKeyFrame class. These classes have an EasingFunction property that
enables us to specify which function to use:

<TextBlock Text="The operation was successful" Margin="20">
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard Storyboard.TargetProperty="FontSize">
 <DoubleAnimationUsingKeyFrames Duration="00:00:2.5">
 <DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="8" />
 <EasingDoubleKeyFrame KeyTime="0:0:1" Value="36">
 <EasingDoubleKeyFrame.EasingFunction>
 <BounceEase EasingMode="EaseOut" Bounces="2"
 Bounciness="1.5" />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>

Mastering Practical Animations Chapter 7

[339]

 <EasingDoubleKeyFrame KeyTime="0:0:2" Value="8">
 <EasingDoubleKeyFrame.EasingFunction>
 <ElasticEase EasingMode="EaseIn" Oscillations="2"
 Springiness="1.5" />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 <EasingDoubleKeyFrame KeyTime="0:0:2.5" Value="36">
 <EasingDoubleKeyFrame.EasingFunction>
 <BackEase EasingMode="EaseOut" Amplitude="2" />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>
</TextBlock>

In this example, we animate the size of the text in a TextBlock element using a number of
key-frames. This creates the kind of transition effect that we might see on lines of text in
Microsoft PowerPoint presentations and could be suitable to use in an application that
presents textual information to the user.

We start by targeting the FontSize property and specifying a total duration of two and a
half seconds. Our first key-frame simply sets our starting font size at zero seconds and so
we can use a DiscreteDoubleKeyFrame for that. The second key-frame is an
EasingDoubleKeyFrame element with a BounceEase easing function and a duration, or
key time, of one second.

Following that, we have another EasingDoubleKeyFrame element that lasts for one
second, but this one uses an ElasticEase function. Finally, we finish with one further
EasingDoubleKeyFrame element with a BackEase easing function and a duration of half
a second. Note that we have used small values for the Bounces and Oscillations
properties, to keep the animation more usable.

Using these easing functions with key-frames enable us to chain any number of them
together to create more complicated animated effects. However, it is easy to go overboard
and create effects that are too much, as can be seen by increasing the values set for the
Bounces and Oscillations properties in this example. In reality, even the modest values
used here could be considered to be too much for practical use.

Mastering Practical Animations Chapter 7

[340]

Animating along a path
There is one further method of animating property values in WPF. Using PathFigure and
PathSegment objects, we can construct a PathGeometry object and then animate a
property value according to the X, Y and/or rotation angle values of the path.

As this method is primarily used for animating objects along a complex path and therefore
not aimed at typical business applications, we will cover only the basics of this functionality
here. As with the other kinds of animation classes, there are different path animation types
that manipulate different CLR types. Path animation classes follow the naming convention
<Type>AnimationUsingPath.

Each <Type>AnimationUsingPath class has a PathGeometry property that we can use to
specify a path to animate along, using an object of type PathGeometry. In order to take
advantage of the ability to animate the path X and Y values in addition to the rotation angle,
we need to use a MatrixTransform element. Let's see an example of this:

<TextBlock Margin="100,125" Text="Hello World" FontSize="18">
 <TextBlock.RenderTransform>
 <MatrixTransform x:Name="MatrixTransform">
 <MatrixTransform.Matrix>
 <Matrix />
 </MatrixTransform.Matrix>
 </MatrixTransform>
 </TextBlock.RenderTransform>
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <MatrixAnimationUsingPath
 Storyboard.TargetName="MatrixTransform"
 Storyboard.TargetProperty="Matrix" Duration="0:0:4"
 RepeatBehavior="Forever" DoesRotateWithTangent="True">
 <MatrixAnimationUsingPath.PathGeometry>
 <PathGeometry>
 <PathFigure StartPoint="49.99,49.99">
 <ArcSegment Point="50,50" Size="50,50"
 SweepDirection="Clockwise" IsLargeArc="True" />
 </PathFigure>
 </PathGeometry>
 </MatrixAnimationUsingPath.PathGeometry>
 </MatrixAnimationUsingPath>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>

Mastering Practical Animations Chapter 7

[341]

</TextBlock>

In this example, we animate a TextBlock element around a circular path using a
MatrixAnimationUsingPath element. The circular path is defined by a single
ArcSegment element within a single PathFigure element. We set the
PathFigure.StartPoint property value to almost match the ArcSegment.Point value
so that the two ends of the ellipse meet.

In order to animate the rotation of the text element from the MatrixAnimationUsingPath
element, we need to set its DoesRotateWithTangent property to true. If this property
was set to false, or simply omitted, then the text element would still be animated in a
circular motion, but it would no longer rotate in line with the tangent of the circular path,
instead remaining upright.

In addition to the MatrixAnimationUsingPath class, we can also use either of the
DoubleAnimationUsingPath or PointAnimationUsingPath classes to animate objects
on a path. However, rather than providing examples for these alternative methods, let's
now move on to find out how we can include every day animations in our application
framework.

Creating everyday animations
After covering the wide range of animations that WPF provides, we can see that many of
them were designed to enable us to perform animations that emulate real-world situations,
rather than to animate form fields in a standard business application. As such, some of the
techniques discussed in this chapter are inappropriate for use in our application
framework.

However, this does not mean that we cannot create animations to use in our everyday
applications. As long as we remember that less is more when it comes to animations in
business applications, we can certainly build simple animations into our application
framework. One of the best ways to encapsulate these basic animations in our framework is
to write one or more custom-animated panels. Let's look at a simple example of an
animated StackPanel:

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Media.Animation;

namespace CompanyName.ApplicationName.Views.Panels

Mastering Practical Animations Chapter 7

[342]

{
 public class AnimatedStackPanel : Panel
 {
 public static DependencyProperty OrientationProperty =
 DependencyProperty.Register(nameof(Orientation),
 typeof(Orientation), typeof(AnimatedStackPanel),
 new PropertyMetadata(Orientation.Vertical));

 public Orientation Orientation
 {
 get { return (Orientation)GetValue(OrientationProperty); }
 set { SetValue(OrientationProperty, value); }
 }

 protected override Size MeasureOverride(Size availableSize)
 {
 double x = 0, y = 0;
 foreach (UIElement child in Children)
 {
 child.Measure(availableSize);
 if (Orientation == Orientation.Horizontal)
 {
 x += child.DesiredSize.Width;
 y = Math.Max(y, child.DesiredSize.Height);
 }
 else
 {
 x = Math.Max(x, child.DesiredSize.Width);
 y += child.DesiredSize.Height;
 }
 }
 return new Size(x, y);
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 Point endPosition = new Point();
 foreach (UIElement child in Children)
 {
 if (Orientation == Orientation.Horizontal)
 {
 child.Arrange(new Rect(-child.DesiredSize.Width, 0,
 child.DesiredSize.Width, finalSize.Height));
 endPosition.X += child.DesiredSize.Width;
 }
 else
 {
 child.Arrange(new Rect(0, -child.DesiredSize.Height,

Mastering Practical Animations Chapter 7

[343]

 finalSize.Width, child.DesiredSize.Height));
 endPosition.Y += child.DesiredSize.Height;
 }
 AnimatePosition(child, endPosition,
 TimeSpan.FromMilliseconds(300));
 }
 return finalSize;
 }

 private void AnimatePosition(UIElement child, Point endPosition,
 TimeSpan animationDuration)
 {
 if (Orientation == Orientation. Vertical)
 GetTranslateTransform(child).BeginAnimation(
 TranslateTransform.YProperty,
 new DoubleAnimation(endPosition.Y, animationDuration));
 else GetTranslateTransform(child).BeginAnimation(
 TranslateTransform.XProperty,
 new DoubleAnimation(endPosition.X, animationDuration));
 }

 private TranslateTransform GetTranslateTransform(UIElement child)
 {
 return child.RenderTransform as TranslateTransform ??
 AddTranslateTransform(child);
 }

 private TranslateTransform AddTranslateTransform(UIElement child)
 {
 TranslateTransform translateTransform = new TranslateTransform();
 child.RenderTransform = translateTransform;
 return translateTransform;
 }
 }
}

As with all custom panels, we just need to provide the implementation for the
MeasureOverride and ArrangeOverride methods. However, in our case, we want to
recreate the functionality of the original StackPanel control and so we have also declared
an Orientation Dependency Property of type
System.Windows.Controls.Orientation, with a default value of Vertical.

In the MeasureOverride method, we iterate through each of the panel's children, calling
their Measure method, passing in the availableSize input parameter. Note that this sets
their DesiredSize property, which will be set to a size of 0,0 until this point.

Mastering Practical Animations Chapter 7

[344]

After calling the Measure method on each child, we are able to use their DesiredSize
property values to calculate the total size required to properly display the rendered items,
depending on the value of the Orientation property.

If the Orientation property is set to Vertical, we use the Math.Max method to ensure
that we keep account of the size of the widest element and if it is set to Horizontal, then
we use it to find the height of the tallest element. Once each child has been measured and
the overall required size of the panel has been calculated, we return this size value from the
MeasureOverride method.

In the ArrangeOverride method, we again iterate through the collection of children, but
this time we call the Arrange method on each child, positioning each just outside the
bounds of the panel, which will be the starting point of their animations.

If the Orientation property is set to Horizontal, we position the children one child’s
width to the left of the origin point and set their height to the height of the panel. If the
Orientation property is set to Vertical, we position them one child’s height above the
origin point and set their width to the width of the panel.

This has the effect of stretching each item across the height or width of the panel,
depending upon the value of the Orientation property, as neatly aligned items with
uniform dimensions look tidier and more professional than items with uneven edges. In
this way, we can build these kinds of decisions right into our framework controls.

Next, we calculate the desired end position of each child after animation with the
endPosition variable and then call the AnimatePosition method, passing in the child,
the end position and the duration of the animation. We end the method by returning the
unchanged finalSize input parameter.

In the AnimatePosition method, we call the GetTranslateTransform method to get the
TranslateTransform object that we will use to move each child across the panel. If the
Orientation property is set to Vertical, we animate the
TranslateTransform.YProperty property to the value of the endPosition.Y property,
otherwise we animate the TranslateTransform.XProperty property to the value of the
endPosition.X property.

In order to animate these property values, we use the BeginAnimation method on the
UIElement object with the property to be added. There are two overloads of this method,
but we are using one that accepts the key of the Dependency Property to animate and the
animation object. The other overload enables us to specify the HandoffBehavior to use
with the animation.

Mastering Practical Animations Chapter 7

[345]

For our animation, we are using a DoubleAnimation, with a constructor that accepts the
To value and the duration of the animation, although there are several other overloads that
we could have used, had we needed to specify further properties, such as the From and
FillBehavior values.

In order to animate the movement of the items in the panel, we need to ensure that they
have a TranslateTransform element applied to the RenderTransform property of the
container item of each child. Remember that different ItemsControl classes will use
different container items, for example, a ListBox control will use ListBoxItem container
elements.

Therefore, if an item does not already have a TranslateTransform element applied, we
must add one. Once each element has a TranslateTransform element, we can use its X
and Y properties to move the item.

In the GetTranslateTransform method, we simply return the existing
TranslateTransform element from the RenderTransform property of each child if one
exists, or call the AddTranslateTransform method to return a new one otherwise. In the
AddTranslateTransform method, we just initialize a new TranslateTransform element
and set it to the RenderTransform property of the child input parameter, before
returning it.

We've now created a basic animated panel and with just around seventy lines of code. The
developers that use our application framework can now animate the entry of items in any
ItemsControl, or any of its derived collection controls, by simply specifying it in a
ItemsPanelTemplate as the ItemsPanel value:

xmlns:Panels="clr-namespace:CompanyName.ApplicationName.Views.Panels"
...
<ListBox ItemsSource="{Binding Users}">
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <Panels:AnimatedStackPanel />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
</ListBox>

However, our panel currently only provides one type of animation, albeit in two possible
directions, and only works as new items are added. Animating objects' exit is somewhat
trickier, because they are normally removed immediately from the panel's Children
collection when the Remove method is called on the data bound collection.

Mastering Practical Animations Chapter 7

[346]

In order to accomplish working exit animations, we'll need to implement a number of
things. We'll need to update our data Model classes to provide them with new properties to
identify which stage of the animation that they're currently in and new events to raise when
the current status changes.

We'll need an IAnimatable interface and an Animatable class that provides the
implementation for each data Model. Let's first see the interface:

namespace CompanyName.ApplicationName.DataModels.Interfaces
{
 public interface IAnimatable
 {
 Animatable Animatable { get; set; }
 }
}

Note that there is already an Animatable class and an IAnimatable interface defined in
the System.Windows.Media.Animation namespace. While it can be unwise to create
classes and interfaces with the same names as existing ones, for the limited purposes of this
book, we will use these names and be mindful to prevent conflicts.

Now let's move on, to see the implementation of our Animatable class:

using System;
using CompanyName.ApplicationName.DataModels.Enums;
using CompanyName.ApplicationName.DataModels.Interfaces;

namespace CompanyName.ApplicationName.DataModels
{
 public class Animatable
 {
 private AdditionStatus additionStatus = AdditionStatus.ReadyToAnimate;
 private RemovalStatus removalStatus = RemovalStatus.None;
 private TransitionStatus transitionStatus = TransitionStatus.None;
 private IAnimatable owner;

 public Animatable(IAnimatable owner)
 {
 Owner = owner;
 }

 public Animatable() { }

 public event EventHandler<EventArgs> OnRemovalStatusChanged;
 public event EventHandler<EventArgs> OnTransitionStatusChanged;

 public IAnimatable Owner

Mastering Practical Animations Chapter 7

[347]

 {
 get { return owner; }
 set { owner = value; }
 }

 public AdditionStatus AdditionStatus
 {
 get { return additionStatus; }
 set { additionStatus = value; }
 }

 public TransitionStatus TransitionStatus
 {
 get { return transitionStatus; }
 set
 {
 transitionStatus = value;
 OnTransitionStatusChanged?.Invoke(this, new EventArgs());
 }
 }

 public RemovalStatus RemovalStatus
 {
 get { return removalStatus; }
 set
 {
 removalStatus = value;
 OnRemovalStatusChanged?.Invoke(this, new EventArgs());
 }
 }
 }
}

This class needs little explanation, other than to note that the
OnTransitionStatusChanged and OnRemovalStatusChanged events get raised when
the values of the TransitionStatus and RemovalStatus properties are changed
respectively and that the class passes itself in as the sender input parameter in each case.
Let's see the three new enumeration classes that are used in our Animatable class:

namespace CompanyName.ApplicationName.DataModels.Enums
{
 public enum AdditionStatus
 {
 None = -1, ReadyToAnimate = 0, DoNotAnimate = 1, Added = 2
 }

 public enum TransitionStatus

Mastering Practical Animations Chapter 7

[348]

 {
 None = -1, ReadyToAnimate = 0, AnimationComplete = 1
 }

 public enum RemovalStatus
 {
 None = -1, ReadyToAnimate = 0, ReadyToRemove = 1
 }
}

We then need to implement this interface in each data Model class that we want to animate:

public class User : ... , IAnimatable
{
 private Animatable animatable;

 ...

 public User(Guid id, string name, int age)
 {
 Animatable = new Animatable(this);
 ...
 }

 public Animatable Animatable
 {
 get { return animatable; }
 set { animatable = value; }
 }

 ...
}

The next thing that we need to do is to stop the Remove method from actually removing
each item when called. We'll need to update our BaseCollection<T> class, or add a new
BaseAnimatableCollection<T> class, so that it triggers the animation instead of
removing the item directly. Here is a cut down example showing one way that we might do
this:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using CompanyName.ApplicationName.DataModels.Enums;
using CompanyName.ApplicationName.DataModels.Interfaces;

namespace CompanyName.ApplicationName.DataModels.Collections
{

Mastering Practical Animations Chapter 7

[349]

 public class BaseAnimatableCollection<T> : BaseCollection<T>
 where T : class, IAnimatable, INotifyPropertyChanged, new()
 {
 private bool isAnimatable = true;

 public BaseAnimatableCollection(IEnumerable<T> collection)
 {
 foreach (T item in collection) Add(item);
 }

 ...

 public bool IsAnimatable
 {
 get { return isAnimatable; }
 set { isAnimatable = value; }
 }

 public new int Count => IsAnimatable ?
 this.Count(i => i.Animatable.RemovalStatus == RemovalStatus.None) :
 this.Count();

 public new void Add(T item)
 {
 item.Animatable.OnRemovalStatusChanged +=
 Item_OnRemovalStatusChanged;
 item.Animatable.AdditionStatus = AdditionStatus.ReadyToAnimate;
 base.Add(item);
 }

 public new virtual void Add(IEnumerable<T> collection)
 {
 foreach (T item in collection) Add(item);
 }

 public new virtual void Add(params T[] items)
 {
 Add(items as IEnumerable<T>);
 }

 public new void Insert(int index, T item)
 {
 item.Animatable.OnRemovalStatusChanged +=
 Item_OnRemovalStatusChanged;
 item.Animatable.AdditionStatus = AdditionStatus.ReadyToAnimate;
 base.Insert(index, item);
 }

Mastering Practical Animations Chapter 7

[350]

 protected override void ClearItems()
 {
 foreach (T item in this) item.Animatable.OnRemovalStatusChanged -=
 Item_OnRemovalStatusChanged;
 base.ClearItems();
 }

 public new bool Remove(T item)
 {
 item.Animatable.RemovalStatus = RemovalStatus.ReadyToAnimate;
 return true;
 }

 public void Item_OnRemovalStatusChanged(object sender, EventArgs e)
 {
 Animatable animatable = (Animatable)sender;
 if (animatable.RemovalStatus == RemovalStatus.ReadyToRemove ||
 (animatable.RemovalStatus == RemovalStatus.ReadyToAnimate &&
 !IsAnimatable))
 {
 base.Remove(animatable.Owner as T);
 animatable.RemovalStatus = RemovalStatus.None;
 }
 }
 }
}

Bear in mind that this is a basic example that could be improved in many ways, such as
adding checks for null, enabling addition, removal and insertion capabilities that do not
trigger animations and adding other useful properties.

In this class, we start by specifying that the generic T type parameter must implement the
IAnimatable interface. As with our other base collection classes, we ensure that all added
and inserted items call a new Add method that attaches our animation related handlers. We
show an example of this in the constructor, but skip the other constructor declarations to
save space.

We then declare an IsAnimatable property that we can use to make this collection work
without animation. This property is used in the overridden (or new) Count property, to
ensure that items that are due to be removed are not included in the count of the
collection's children.

Mastering Practical Animations Chapter 7

[351]

In the new Add method, we attach a reference of our Item_OnRemovalStatusChanged
handler to the OnRemovalStatusChanged event of the Animatable object of the item
being added. We then set the AdditionStatus property of the Animatable object to the
ReadyToAnimate member to signal that the object is ready to begin its entrance animation.

As this base collection is extending another base class, we need to remember to call its Add
method, passing in the item, so that it can attach its own handler for the item's
PropertyChanged event. The other Add overloads enable multiple items to be added to the
collection, but both internally call the first Add method. The Insert method does the same
as the first Add method.

The ClearItems method iterates through each item in the collection, detaching the
reference to the Item_OnRemovalStatusChanged handler from each before calling the
ClearItems method of the base class. As it is, this method could be reserved for removing
all items from the collection without animation, but it would be easy to call the Remove
method with each item to include animations.

The Remove method in this class enables us to animate the exit of each item; it doesn't
actually remove the item from the collection, but instead sets the RemovalStatus property
of the item's Animatable object to the ReadyToAnimate member to signal that the object is
ready to begin its exit animation. It then returns true from the method to signify successful
removal of the item.

Finally, we get to the Item_OnRemovalStatusChanged event handler, which is the next
major part in enabling exit animations. In it, we cast the sender input parameter to an
instance of our Animatable class. Remember that it passes itself as the sender parameter
when raising the event.

We then check whether the RemovalStatus property of the Animatable instance is set to
the ReadyToRemove member, or both its RemovalStatus property is set to
ReadyToAnimate and the collection is not animatable. If either condition is true, we finally
call the Remove method of the base class to actually remove the item from the collection
and set the RemovalStatus property to None.

In this way, when the collection is set to be not animatable and the Remove method is
called, the item is immediately removed and the Animatable object's RemovalStatus
property is set to the None member in the Item_OnRemovalStatusChanged handler. If
you remember, the OnRemovalStatusChanged event gets raised when the
RemovalStatus property value is changed.

Mastering Practical Animations Chapter 7

[352]

However, we're still missing part of this puzzle. What sets the Animatable object's
RemovalStatus property to the ReadyToRemove member to remove each item? We will need to
update our animated panel to accomplish this task, and to do this, it will need to maintain a
collection of the elements that need to be removed and signal the collection to remove them
once their exit animations complete:

private List<UIElement> elementsToBeRemoved = new List<UIElement>();

We can use the Storyboard.Completed event to notify us when the animation is
complete and then signal to remove the item at that point, by setting the Animatable
object's RemovalStatus property to the ReadyToRemove member. Let's take a look at the
required changes to our animated panel. First, we need to add the following using
declarations:

using System.Collections.Generic;
using CompanyName.ApplicationName.DataModels.Enums;
using Animatable = CompanyName.ApplicationName.DataModels.Animatable;
using IAnimatable =
 CompanyName.ApplicationName.DataModels.Interfaces.IAnimatable;

Next, we need to replace the call to the AnimatePosition method from the original
ArrangeOverride method with the following line:

BeginAnimations(child, finalSize, endPosition);

We then need to add the following additional methods after the ArrangeOverride
method:

private void BeginAnimations(UIElement child, Size finalSize,
 Point endPosition)
{
 FrameworkElement frameworkChild = (FrameworkElement)child;
 if (frameworkChild.DataContext is IAnimatable)
 {
 Animatable animatable =
 ((IAnimatable)frameworkChild.DataContext).Animatable;
 animatable.OnRemovalStatusChanged -= Item_OnRemovalStatusChanged;
 animatable.OnRemovalStatusChanged += Item_OnRemovalStatusChanged;
 if (animatable.AdditionStatus == AdditionStatus.DoNotAnimate)
 {
 child.Arrange(new Rect(endPosition.X, endPosition.Y,
 frameworkChild.ActualWidth, frameworkChild.ActualHeight));
 }
 else if (animatable.AdditionStatus == AdditionStatus.ReadyToAnimate)
 {
 AnimateEntry(child, endPosition);

Mastering Practical Animations Chapter 7

[353]

 animatable.AdditionStatus = AdditionStatus.Added;
 animatable.TransitionStatus = TransitionStatus.ReadyToAnimate;
 }
 else if (animatable.RemovalStatus == RemovalStatus.ReadyToAnimate)
 AnimateExit(child, endPosition, finalSize);
 else if (animatable.TransitionStatus ==
 TransitionStatus.ReadyToAnimate)
 AnimateTransition(child, endPosition);
 }
}

private void Item_OnRemovalStatusChanged(object sender, EventArgs e)
{
 if (((Animatable)sender).RemovalStatus == RemovalStatus.ReadyToAnimate)
 InvalidateArrange();
}

private void AnimateEntry(UIElement child, Point endPosition)
{
 AnimatePosition(child, endPosition, TimeSpan.FromMilliseconds(300));
}

private void AnimateTransition(UIElement child, Point endPosition)
{
 AnimatePosition(child, endPosition, TimeSpan.FromMilliseconds(300));
}

private void AnimateExit(UIElement child, Point startPosition,
 Size finalSize)
{
 SetZIndex(child, 100);
 Point endPosition =
 new Point(startPosition.X + finalSize.Width, startPosition.Y);
 AnimatePosition(child, startPosition, endPosition,
 TimeSpan.FromMilliseconds(300), RemovalAnimation_Completed);
 elementsToBeRemoved.Add(child);
}

private void AnimatePosition(UIElement child, Point startPosition,
 Point endPosition, TimeSpan animationDuration,
 EventHandler animationCompletedHandler)
{
 if (startPosition.X != endPosition.X)
 {
 DoubleAnimation xAnimation = new DoubleAnimation(startPosition.X,
 endPosition.X, animationDuration);
 xAnimation.AccelerationRatio = 1.0;
 if (animationCompletedHandler != null)

Mastering Practical Animations Chapter 7

[354]

 xAnimation.Completed += animationCompletedHandler;
 GetTranslateTransform(child).BeginAnimation(
 TranslateTransform.XProperty, xAnimation);
 }
 if (startPosition.Y != endPosition.Y)
 {
 DoubleAnimation yAnimation = new DoubleAnimation(startPosition.Y,
 endPosition.Y, animationDuration);
 yAnimation.AccelerationRatio = 1.0;
 if (startPosition.X == endPosition.X && animationCompletedHandler !=
 null) yAnimation.Completed += animationCompletedHandler;
 GetTranslateTransform(child).BeginAnimation(
 TranslateTransform.YProperty, yAnimation);
 }
}

private void RemovalAnimation_Completed(object sender, EventArgs e)
{
 for (int index = elementsToBeRemoved.Count - 1; index >= 0; index--)
 {
 FrameworkElement frameworkElement =
 elementsToBeRemoved[index] as FrameworkElement;
 if (frameworkElement.DataContext is IAnimatable)
 {
 ((IAnimatable)frameworkElement.DataContext).Animatable.RemovalStatus
 = RemovalStatus.ReadyToRemove;
 elementsToBeRemoved.Remove(frameworkElement);
 }
 }
}

Let's examine this new code. First, we have the BeginAnimations method, in which we
cast the container control to a FrameworkElement, so that we can access its DataContext
property. Our data object is accessed from this property and we cast it to an IAnimatable
instance, so that we can access the Animatable object via its Animatable property.

We then remove our Item_OnRemovalStatusChanged event handler from the
OnRemovalStatusChanged event before re-attaching it, to ensure that only a single
handler is attached, regardless of how many times each child passes through this method.

If the AdditionStatus property is set to DoNotAnimate, we arrange the item at its end
position immediately and without animation, while if it is set to ReadyToAnimate, we call
the AnimateEntry method and then set the AdditionStatus property to Added. Finally,
if the RemovalStatus property is set to ReadyToAnimate, we call the AnimateExit
method.

Mastering Practical Animations Chapter 7

[355]

In the Item_OnRemovalStatusChanged event handler, we call the panel's
InvalidateArrange method if the RemovalStatus property is set to ReadyToAnimate.
This is another essential part of the exit animation strategy and it requests the layout
system to call the ArrangeOverride method, thereby triggering the starting of the exit
animation(s).

Remember that the OnRemovalStatusChanged event gets raised when the value of the
RemovalStatus property is changed. Also recall that the RemovalStatus property is set
to the ReadyToAnimate member in the Remove method of the
BaseAnimatableCollection<T> class. That raises the event and this event handler starts
the animations in response.

The AnimateEntry method simply calls the original, unchanged AnimatePosition
method from our first animated panel attempt. The AnimateExit method takes an
additional startPosition input parameter, which represents the current position of each
item within the panel.

We start by setting the Panel.SetZIndex Attached Property to a value of 100 for each
child, to ensure that their animated departure is rendered above, or over the top of, the
remaining items. We then calculate the end position of the animation using the start
position and the size of the panel.

Next, we call an overload of the AnimatePosition method, passing in our child, start and
end positions, animation duration and an event handler as parameters. After the child
item's position animation has been started, the child is added to the
elementsToBeRemoved collection.

In the AnimatePosition method, we first check that our start and end positions are
different, before creating and starting our DoubleAnimation objects. If the X values are
different and the event handler input parameter is not null, then we attach it to the
Completed event of the xAnimation object before starting its animation.

If the Y values are different and the event handler input parameter is not null and the
event handler was not already attached to the xAnimation object, then we attach it to the
Completed event of the yAnimation object before starting its animation. Note that we only
need to attach one handler to this event, because we only have one object to remove from
the collection.

Mastering Practical Animations Chapter 7

[356]

Also note that we set the AccelerationRatio property to 1.0 in this overload, so that the
item accelerates off screen. However, in a business application framework, we would want
to keep our animation properties in sync and so, we would probably set the
AccelerationRatio property to 1.0 on the animation objects in the original
AnimatePosition method as well.

The last piece of the puzzle is the RemovalAnimation_Completed event handling method.
This method gets called when the exit animation has completed and iterates through the
elementsToBeRemoved collection. If any element to remove implements the IAnimatable
interface, its Animatable object's RemovalStatus property is set to the ReadyToRemove
member.

If you remember, this raises the OnRemovalStatusChanged event, which is handled by the
Item_OnRemovalStatusChanged event handler in the BaseAnimatableCollection
class. In that method, the Animatable object's RemovalStatus property is checked for the
ReadyToRemove member and if found, the owning item is actually removed from the
collection.

And so, to summarize; the Remove method of the animation collection is called, but instead
of removing the item, it sets a property on it, which raises an event that is handled by the
animated panel; the panel then starts the exit animation and when completed, it raises an
event that is handled by the collection class and results in the item actually being removed
from the collection.

While this animated panel is entirely usable as it is, there are many ways that it could be
further improved. One important thing that we could do would be to extract all of the
properties and animation code from this class and put them into a base AnimatedPanel
class. In this way, we could reuse this class when creating other types of animated panel,
such as an AnimatedWrapPanel.

We could then further extend the base class by exposing additional animation properties,
so that users of our panel could have more control over the animations that it provides. For
example, we could declare VerticalContentAlignment and
HorizontalContentAlignment properties to dictate how our panel items should be
aligned in the panel.

Additionally, we could add EntryAnimationDirection and ExitAnimationDirection
properties to specify which direction to animate our panel items as they are added and
removed from the panel. We could also enable different types of animation, such as fading
or spinning, by animating the Opacity property, or the Angle property of a
RotationTransform element.

Mastering Practical Animations Chapter 7

[357]

Furthermore, we could add EntryAnimationDuration and ExitAnimationDuration
properties to specify the length of time that each animation should take, rather than
hardcoding values directly into our panel. There really is no limit to what functionality that
we can provide with our application framework panels, other than the limitations dictated
by the end users' computer hardware.

Summary
In this chapter, we've investigated the variety of animation possibilities that WPF provides
us with, primarily focusing on XAML and the more usable options. We've discovered the
finer details of timelines and also explored how we can incorporate animation into our
application framework, so that its users can easily leverage the power of animations
without having to know anything about them.

In the next chapter, we will look at a number of ways that we can improve the overall look
and feel of our applications, from providing consistent application styles and icons to
examining a number of techniques for creating rich graphics.

8
Creating Visually Appealing

User Interfaces
While adding form elements to a View is simple, it takes somewhat more to produce an
application that looks visually appealing. Luckily, Windows Presentation Foundation
(WPF) provides us with many features that can help us to achieve this goal, such as
gradient brushes, rounded corners, opacity control, layered visuals, and animations.

In this chapter, we'll take a look at a number of ways of using these elements in order to
greatly improve the visual aspect of our applications. We'll investigate solutions that are
simple to implement, using style properties, and other solutions that will take more work,
such as animations and custom controls.

Styling applications consistently
One of the easiest ways to make our applications stand out is to make them look unique.
This can be achieved by defining custom styles for the controls that we use in it. However,
if we decide to style our controls, it is essential that we style all of the controls that we use,
as a half styled application can often look worse than an application that merely uses the
default styles.

It is therefore absolutely essential that we design our application control styles consistently,
in order to attain a professional look for our application. In this section, we'll discuss a
number of tips and tricks to help us to implement these application styles.

Creating Visually Appealing User Interfaces Chapter 8

[359]

Overriding default control styles
When providing custom styles for our application controls, this typically requires us
to define a new ControlTemplate element for each of them. As these can often be very
large, it is customary to declare them in a separate resource file and merge it with the
application resources in the App.xaml file, as shown in Chapter 5, Using the Right Controls
for the Job.

Before starting this task, we need to plan how we want our controls to look and then apply
this same look to each control. Another mistake would be to customize different controls
with different styles, as consistency is key to providing a professional look. For example, if
we want our single-line textboxes to be a certain height, then we should also define our
other controls to be the same height.

The custom styles that we declare for our controls can be part of our application
framework. If we define them without naming them via the x:Key directive, they will be
implicitly applied and so, the developers that utilize our application framework need not
concern themselves with the look of each control, effectively freeing them up to concentrate
on aggregating them into the various Views.

The first thing to do before starting to design our custom styles is to define a small range of
colors that we will use in our application. Using too many colors in an application can
make it look less professional, so we should choose a few shades of a small number of
colors to use. There are a number of online tools that can help us to pick a color palette to
use.

Once we have chosen our application colors, we should declare them, first, as Color objects
in the App.xaml file, and then declare brush elements that use them, as most controls use
brushes rather than colors. This has two benefits; using only these colors will promote
consistency and if we ever need to change a color, we only need to change it in a single
place:

<Color x:Key="ReadOnlyColor">#FF585858</Color>
...
<SolidColorBrush x:Key="ReadOnlyBrush"
 Color="{StaticResource ReadOnlyColor}" />

It is often a good idea to also define multiple named styles for the most common types of
controls. For example, having a Label style for TextBlock elements, that right aligns them
and adds suitable margins, or a Heading style that sets a larger font size and heavier font
weight. Providing the developers with a set of predefined styles helps to make the
application look consistent.

Creating Visually Appealing User Interfaces Chapter 8

[360]

When defining multiple named styles, it is common to reuse some of them in others. For
example, if we have a default style for the TextBox control, we can base other style
variations on it. Let's see some XAML examples:

<Style x:Key="TextBoxStyle" TargetType="{x:Type TextBox}">
 <Setter Property="SnapsToDevicePixels" Value="True" />
 <Setter Property="Margin" Value="0,0,0,5" />
 <Setter Property="Padding" Value="1.5,2" />
 <Setter Property="MinHeight" Value="25" />
 <Setter Property="TextWrapping" Value="Wrap" />
 ...
</Style>
<Style x:Key="Max2LineTextBoxStyle" TargetType="{x:Type TextBox}"
 BasedOn="{StaticResource TextBoxStyle}">
 <Setter Property="MaxHeight" Value="44" />
 <Setter Property="VerticalScrollBarVisibility" Value="Auto" />
 <Setter Property="ToolTip"
 Value="{Binding Text, RelativeSource={RelativeSource Self}}" />
</Style>
<Style x:Key="Max3LineTextBoxStyle" TargetType="{x:Type TextBox}"
 BasedOn="{StaticResource Max2LineTextBoxStyle}">
 <Setter Property="MaxHeight" Value="64" />
</Style>
<Style x:Key="ReadOnlyTextBoxStyle" TargetType="{x:Type TextBox}"
 BasedOn="{StaticResource TextBoxStyle}">
 <Setter Property="Background" Value="{StaticResource ReadOnlyBrush}" />
 <Setter Property="IsReadOnly" Value="True" />
 <Setter Property="Cursor" Value="Arrow" />
</Style>

Here, the simplified TextBoxStyle style defines the majority of the properties for all
TextBox controls. The Max2LineTextBoxStyle style inherits all of the property settings
from this style and sets a few more that ensure that the vertical scrollbar can appear when
required and enforce a maximum height for the control.

The Max3LineTextBoxStyle style extends the Max2LineTextBoxStyle style and so,
inherits all of its property settings, as well as those of the TextBoxStyle style. It overrides
the MaxHeight property that was set in the previous style. The ReadOnlyTextBoxStyle
style also extends the TextBoxStyle style and sets properties to ensure that the control is
read-only. Defining styles in this way ensures that controls in each View will remain
consistent.

Creating Visually Appealing User Interfaces Chapter 8

[361]

As well as defining default styles for our application controls, it is often also a good idea to
provide default data template resources for each data Model in the application. In a similar
way to the controls, predefining these data templates can result in improved consistency.
We can also define a number of named templates to override the default ones with and use
in different scenarios.

If there are a large number of data models in an application, it can be helpful to also declare
their data templates in a separate resource file and merge it with the application resources
in the App.xaml file, like to the default control templates. It is therefore not unusual to see
multiple resource files being merged in the application resources file.

Using professional icons
One thing that can often be underestimated when developing applications is the overall
impact that a consistent set of decent icons can have. Using mis-matched icons that have
been sourced from a number of different places can really make an otherwise professional
looking application look far less professional.

If you or your company cannot afford to or will not for any other reason buy a set of
custom icons, all is not lost. Visual Studio has long since offered sets of professional icons in
a number of different formats, that we can utilize in our applications free of charge. These
are the actual icons that are used in Visual Studio, Office and other Microsoft applications,
so many users will already be familiar with them.

In older versions of Visual Studio, such as the 2010, or even 2008 versions, the provided
image libraries were installed with the application and could be found at one of the
following paths:

C:\Program Files\Microsoft Visual Studio
9.0\Common7\VS2008ImageLibrary\1033

C:\Program Files\Microsoft Visual Studio
10.0\Common7\VS2010ImageLibrary\1033

Note that on a 64 bit machine, this path would change to the following:

C:\Program Files (x86)\Microsoft Visual Studio
10.0\Common7\VS2010ImageLibrary\1033

Creating Visually Appealing User Interfaces Chapter 8

[362]

However, Microsoft changed how the image libraries could be accessed in newer versions
of Visual Studio, from the 2012 version onwards. In these later versions, the image libraries
were no longer included in the installation of Visual Studio. Instead, we have to search
for Visual Studio Image Library and manually download them from the Microsoft
website.

The newer icon sets also contain searchable Adobe Reader files that list the contents of the
icon sets and provide links to the relevant folders of each of the icons. Most of the icons are
also included in multiple sizes and so the newer libraries are much larger than the previous
ones.

A few examples of the 2010 icons can be seen in the following image:

The following image shows the same icons, but in the flat style introduced in 2015:

The following image shows how the flat style icons changed in 2017, for comparison:

Note that no image library was made available with Visual Studio 2019, so maybe this is a
sign of things to come. However, the current collections of icons will cover most purposes.

Creating Visually Appealing User Interfaces Chapter 8

[363]

Layering visuals
So far, we've just looked at simple redefinitions of the standard controls, by altering shapes,
sizes, borders, and other common properties. However, we can do much more than that
with WPF. Before continuing with this section, it is important to know that the more visuals
each control is comprised of, the longer it will take to render them and so, this can
negatively affect performance.

As such, it's important not to overdo the visual aspect of our controls if our application will
be run on slow, old computers. Conversely, if we know that our end users will have plenty
of RAM and/or graphics cards, then we can go the extra distance and develop visually
stunning controls. Let's take a look at some techniques that we can use to improve the look
of our controls.

Throwing shadows
One of the easiest ways to make our UI elements pop out of the screen is to add a shadow
to them. Each control has an Effect property that is inherited from the UIElement class.
We can set an object of type DropShadowEffect to this property to add a shadow to our
controls.

However, we must be conservative with the settings that we use on the
DropShadowEffect element because this effect can be easily overdone. We also do not
want to apply this effect to every control, as that would spoil the overall effect. It is most
useful when setting on a panel that contains other controls, or on a border that surrounds
such a panel. Let's see a simple example of applying this effect:

<Button Content="Click Me" Width="140" Height="34" FontSize="18">
 <Button.Effect>
 <DropShadowEffect Color="Black" ShadowDepth="6" BlurRadius="6"
 Direction="270" Opacity="0.5" />
 </Button.Effect>
</Button>

Let's see what the output of this code looks like:

Creating Visually Appealing User Interfaces Chapter 8

[364]

In this example, we have a standard button with a DropShadowEffect element that is set
as its Effect property. As we'll see later in in this chapter, the DropShadowEffect class
has a number of uses, but its primary use is to create shadow effects.

When using this element for shadow effects, we generally want to set its Color property to
black and its Opacity property to a value that is at least semi-transparent for best, or most
realistic, results. The ShadowDepth property dictates how far from the element the shadow
should fall. Along with the BlurRadius property, this property is used to add a sense of
height to the element.

The BlurRadius property spreads out the shadow area while also making it less dense.
Like the ShadowDepth property, this property has a default value of five. The Direction
property specifies which direction the shadow should fall in, with a value of zero degrees
making the shadow fall to the right and increasing values moving the shadow angle anti-
clockwise.

Note that a value of 270 makes the shadow fall directly below the applied control and is
often most suitable for use in business applications. Using this angle results in what
appears to be an element that is hovering slightly above, or in front of, the screen, with a
light source coming from above, which is the most natural direction for light to come from.

In contrast to this, an angle of 45 degrees for example, would place the shadow to the top
right of the element and this would have the effect of telling the brain that there is a light
source to the bottom left. However, this particular effect is unnatural looking and can
detract from, rather than add to the styling of an application.

Declaring multiple borders
Another simple technique that we can use to make our controls stand out is to declare
multiple Border elements for each control. By declaring one or more borders within an
outer border, we can give our controls that professional look. We'll see how we can animate
these borders differently when the user's mouse cursor is over the button later, but for now,
let's see how we can create this effect:

<Grid Width="160" Height="68">
 <Grid.Background>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="Red" />
 <GradientStop Color="Yellow" Offset="1" />
 </LinearGradientBrush>
 </Grid.Background>
 <Button Content="Click Me" Width="120" Height="28" FontSize="14"

Creating Visually Appealing User Interfaces Chapter 8

[365]

 Margin="20">
 <Button.Template>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border BorderBrush="Black" BorderThickness="1"
 Background="#7FFFFFFF" Padding="1" CornerRadius="5"
 SnapsToDevicePixels="True">
 <Border BorderBrush="#7F000000" BorderThickness="1"
 Background="White" CornerRadius="3.5"
 SnapsToDevicePixels="True">
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>
 </Border>
 </ControlTemplate>
 </Button.Template>
 </Button>
</Grid>

In this example, we have declared a simple ControlTemplate element for our Button
control to demonstrate the double border technique. Note that we would typically declare
this template in the Application.Resources section of the App.xaml file, so that it could
be reused, but we have declared it locally to save space here.

Note that we need to adjust the corner radius of the inner border to accurately fit within the
outer border. If we had used the same size for both, they would not have correctly fit
together. Also, we have set the SnapsToDevicePixels property to true on the two
borders to ensure that they are not blurred by anti-aliasing artefacts.

One further point to note is that we have used #7FFFFFFF as the value for the background
of the outer border and the border brush of the inner border. The alpha channel in this
value is set to 7F, which equates to an opacity value of 0.5. This means that these elements
will be partly transparent and so the colors from the background will partly show through
the border edges.

We added our button into a Grid panel and set a LinearGradientBrush object as its
background to demonstrate this semi-transparent effect. When rendered, our background
gradient and button will look like the following image:

Creating Visually Appealing User Interfaces Chapter 8

[366]

Reusing composite visuals
The next technique involves defining a particular motif that will be rendered in the
background of our controls. This could be all or part of a company logo, a particular shape,
or even just a simple, well-placed curve. This will form the bottom most level of our control
visuals and can have additional levels of visuals on top. Let's take a look at one way in
which we could implement such a design, starting with defining some resources:

<RadialGradientBrush x:Key="LayeredButtonBackgroundBrush" RadiusX="1.85"
 RadiusY="0.796" Center="1.018,-0.115" GradientOrigin="0.65,- 0.139">
 <GradientStop Color="#FFCACACD" />
 <GradientStop Color="#FF3B3D42" Offset="1" />
</RadialGradientBrush>
<LinearGradientBrush x:Key="LayeredButtonCurveBrush" StartPoint="0,0"
 EndPoint="1,1">
 <GradientStop Color="#FF747475" Offset="0" />
 <GradientStop Color="#FF3B3D42" Offset="1" />
</LinearGradientBrush>
<Grid x:Key="LayeredButtonBackgroundElements">
 <Rectangle Fill="{StaticResource LayeredButtonBackgroundBrush}" />
 <Path StrokeThickness="0"
 Fill="{StaticResource LayeredButtonCurveBrush}">
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Intersect">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="-20,50.7" RadiusX="185" RadiusY="46" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry Rect="0,0,106,24" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
 </Path>
</Grid>
<VisualBrush x:Key="LayeredButtonBackground"
 Visual="{StaticResource LayeredButtonBackgroundElements}" />

There are a few elements to this design, so let's take a look at each one individually. We
started by declaring a RadialGradientBrush element with the
key LayeredButtonBackgroundBrush and a LinearGradientBrush with a key of
LayeredButtonCurveBrush.

The RadiusX and RadiusY properties of the RadialGradientBrush element specify the X
and Y radii of the outermost ellipse that encompasses the radial gradient, while the Center
and GradientOrigin properties dictate the center and focal point of the radial gradient
and enable us to position it precisely within our rectangle.

Creating Visually Appealing User Interfaces Chapter 8

[367]

The LinearGradientBrush element has a StartPoint value of 0,0 and an EndPoint
value of 1,1, which results in a diagonal gradient. With this particular design, the idea is to
have a sharp contrast between the two gradients at the center and to somewhat blend them
together at the edges.

Next, we declare a Grid panel with the key LayeredButtonBackgroundElements, which
contains a Rectangle and a Path element. The rectangle is stretched to fill the panel by
default and is painted with the LayeredButtonBackgroundBrush resource. The Path
element is painted with the LayeredButtonCurveBrush resource.

The Data property of the Path object is where we define the shape of the path. There are a
number of ways that we can specify the path data; however, in this example, we use a
CombinedGeometry element with a GeometryCombineMode value of Intersect, which
outputs a single shape that represents the intersection of the two specified geometry
shapes.

Inside the CombinedGeometry element, we have the Geometry1 and Geometry2
properties, where we combine the two geometry shapes according to the Intersect mode
specified by the GeometryCombineMode property.

Our first shape defines the curve in our design and comes from an EllipseGeometry
element, using the Center property to position the ellipse and the RadiusX and RadiusY
properties to shape it. The second shape is a rectangle that comes from a
RectangleGeometry element and is defined by its Rect property.

The intersection of these two shapes is the result of this path and approximately covers the
bottom section of our overall shape, up to the curve. The partly obscured rectangle element
behind this completes the remainder of the overall shape.

The Visual property of the VisualBrush element with
the LayeredButtonBackground key is set to the LayeredButtonBackgroundElements
panel, so any UI element that is painted with this brush will now have this design
imprinted on it. Once we have added these resources to
the Application.Resources section in the App.xaml file, we can use them through
the VisualBrush element, as follows:

<Button Background="{StaticResource LayeredButtonBackground}" Width="200"
 Height="40" SnapsToDevicePixels="True" />

Creating Visually Appealing User Interfaces Chapter 8

[368]

This will render the gradients in the button background, like this:

In this example, we manually specify the reference to the visual brush to paint
the Button object's background. However, setting the background in this way would
require the developers that use our application framework to do this each time they add a
button. A better solution would be to redesign the default button template so that the visual
brush is automatically applied to each button. We'll see an example of this later in this
chapter when we pull together a number of these techniques.

Reflecting light
Another technique involves adding a semi-opaque layer with a gradient that fades to
transparency over the top of our controls to give the appearance of the reflection of a light
source. This can easily be achieved using a simple Border element and a
LinearGradientBrush instance. Let's look at how we can accomplish this:

<Button Content="Click Me" Width="140" Height="34" FontSize="18"
 Foreground="White" Margin="20">
 <Button.Template>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border Background="#FF007767" CornerRadius="5"
 SnapsToDevicePixels="True">
 <Grid>
 <Rectangle RadiusX="4" RadiusY="4" Margin="1,1,1,7"
 SnapsToDevicePixels="True">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#BFFFFFFF" />
 <GradientStop Color="#00FFFFFF" Offset="0.8" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 </Border>

Creating Visually Appealing User Interfaces Chapter 8

[369]

 </ControlTemplate>
 </Button.Template>
</Button>

When run, this example will produce a button that looks like this:

Let's examine this example. We start by declaring the Button element with a few style
properties. Rather than defining a separate style or control template in a resources section,
as we would in a real-world application, we again declare the template inline to save space
here.

In the control template, we first declare a Border element with a jade green background
and a CornerRadius value of 5. We again set the SnapsToDevicePixels property to
true to ensure that the edges remain sharp.

Inside the border, we define two elements within a Grid panel. The first is the Rectangle
element that produces the reflection effect and the second is the required
ContentPresenter object. The rectangle uses a value of 4 in the RadiusX and RadiusY
properties and sets the Margin property appropriately to ensure that there is a tiny gap
around the edge of the reflection.

It also sets its SnapsToDevicePixels property to true to ensure that this tiny gap is not
blurred. Note that the value for the bottom margin is 7, because we do not want the
reflection effect to cover the bottom half of the button. The Fill property is where the
reflection effect is actually created.

In the rectangle's Fill property, we define a vertical LinearGradientBrush element by
setting both of the X values of the StartPoint and EndPoint properties and the
StartPoint.Y property to 0 and the Endpoint.Y property to 1; plotting these points on a
graph will produce a vertical line, and so this produces a vertical gradient.

Creating Visually Appealing User Interfaces Chapter 8

[370]

In the GradientStops collection of the LinearGradientBrush object, we have defined
two GradientStop elements. The first has an offset of zero and is set to a white color with
a hexadecimal alpha channel value of BF, which approximates an opacity value of 0.7. The
second has an offset of 0.8 and is set to a white color that has a hexadecimal alpha channel
value of 00, which results in a completely transparent color and could be replaced with the
Transparent color.

The resulting gradient, therefore, starts slightly transparent at the top and is fully
transparent at the bottom, which, with the bottom margin and offset values, is actually
around the middle of the button. As with our other examples, the ContentPresenter
object is declared afterwards so that it is rendered on top of the reflection effect.

Creating glowing effects
Another effect that we can create for our controls is that of a glowing appearance, as if a
light were shining outward from inside the control. We'll need another
LinearGradientBrush instance and UI element to paint it on. A Rectangle element suits
this role well, as it's very lightweight. We should define these resources in the application
resources in the App.xaml file to enable every View to use them:

<TransformGroup x:Key="GlowTransformGroup">
 <ScaleTransform CenterX="0.5" CenterY="0.85" ScaleY="1.8" />
 <TranslateTransform Y="0.278" />
</TransformGroup>
<RadialGradientBrush x:Key="GreenGlow" Center="0.5,0.848"
 GradientOrigin="0.5,0.818" RadiusX="-1.424" RadiusY="-0.622"
 RelativeTransform="{StaticResource GlowTransformGroup}">
 <GradientStop Color="#CF65FF00" Offset="0.168" />
 <GradientStop Color="#4B65FF00" Offset="0.478" />
 <GradientStop Color="#0065FF00" Offset="1" />
</RadialGradientBrush>
<Style x:Key="GlowingButtonStyle" TargetType="{x:Type Button}">
 <Setter Property="SnapsToDevicePixels" Value="True" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border BorderBrush="White" BorderThickness="1"
 Background="DarkGray" CornerRadius="3">
 <Grid>
 <Rectangle IsHitTestVisible="False" RadiusX="2"
 RadiusY="2" Fill="{StaticResource GreenGlow}" />
 <ContentPresenter Content="{TemplateBinding Content}"
 HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Grid>

Creating Visually Appealing User Interfaces Chapter 8

[371]

 <Border.Effect>
 <DropShadowEffect Color="#FF65FF00" ShadowDepth="4"
 Opacity="0.4" Direction="270" BlurRadius="10" />
 </Border.Effect>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

We start off by declaring a TransformGroup element that enables us to group one or more
transform objects together. Inside it, we define a ScaleTransform element that scales
applied elements vertically by the default factor of 1 and horizontally by a factor of 1.8.
We specify the center of this transformation using its CenterX and CenterY properties.
Next, we declare a TranslateTransform element that moves applied elements
downwards by a small amount.

After this, we define a RadialGradientBrush object that will represent the glow in our
design. We use the RadiusX and RadiusY properties to shape the brush element and
specify the Center and GradientOrigin properties to dictate the center and focal point of
the radial gradient.

We then set the TransformGroup element to the RelativeTransform property of the
brush to apply the transforms to it. Note that the three GradientStop elements all use the
same R, G and B values, and just differ in the alpha channel, or opacity values.

Next, we declare the GlowingButtonStyle style for type Button, setting the
SnapsToDevicePixels property to true, to keep its lines crisp and sharp. In the
Template property, we define a ControlTemplate element with a white Border element
that has slightly rounded corners.

Inside the border, we declare a Grid panel containing a Rectangle and a
ContentPresenter element. Again, the RadiusX and RadiusY properties of the rectangle
are set to a smaller value than that of the CornerRadius property of the parent border
control to ensure that it fits evenly within it. Our RadialGradientBrush resource is
assigned as the rectangle's Fill property.

The ContentPresenter object is centered to ensure that the content of the button will be
rendered in its center. Returning to the Border element, we see a DropShadowEffect is
declared within its Effect property. However, this element is not here to create a shadow
effect; this class is multi-functional and can also render glowing effects as well as shadow
effects.

Creating Visually Appealing User Interfaces Chapter 8

[372]

The trick is to set its Color property to a color other than black and its BlurRadius
property to a larger value than we would typically use when creating a shadow effect. In
this particular case, we set the Direction property to 270 and the ShadowDepth property
to 4 in order to position the glow effect toward the bottom of the border, where the light is
supposed to be coming from.

Unfortunately, this effect does not translate to grayscale and paper well, so the glowing
effect is somewhat lost when not viewed in color and on screen. For readers of the e-book
version of this book, here is what the glowing effect from our example looks like:

Putting it all together
While these various effects can improve the look of our controls on their own, the biggest
improvement can be found when amalgamating a number of them into a single design. In
this next example, we'll do just that. We first need to add a few more resources to use:

<SolidColorBrush x:Key="TransparentWhite" Color="#7FFFFFFF" />
<SolidColorBrush x:Key="VeryTransparentWhite" Color="#3FFFFFFF" />
<SolidColorBrush x:Key="TransparentBlack" Color="#7F000000" />
<SolidColorBrush x:Key="VeryTransparentBlack" Color="#3F000000" />
<VisualBrush x:Key="SemiTransparentLayeredButtonBackground"
 Visual="{StaticResource LayeredButtonBackgroundElements}"
 Opacity="0.65" />

There isn't anything too complicated here. We simply have a number of colors defined with
varying levels of transparency and a slightly transparent version of our visual brush that
references our layered background elements. Let's move on to the encompassing style now:

<Style TargetType="{x:Type Button}">
 <Setter Property="SnapsToDevicePixels" Value="True" />
 <Setter Property="Cursor" Value="Hand" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border CornerRadius="3"
 BorderBrush="{StaticResource TransparentBlack}"
 BorderThickness="1"

Creating Visually Appealing User Interfaces Chapter 8

[373]

 Background="{StaticResource TransparentWhite}">
 <Border Name="InnerBorder" CornerRadius="2"
 Background="{StaticResource LayeredButtonBackground}"
 Margin="1">
 <Grid>
 <Rectangle IsHitTestVisible="False" RadiusX="2"
 RadiusY="2" Fill="{StaticResource GreenGlow}" />
 <ContentPresenter Content="{TemplateBinding Content}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding
 HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding
 VerticalContentAlignment}" />
 </Grid>
 </Border>
 <Border.Effect>
 <DropShadowEffect Color="Black" ShadowDepth="6"
 BlurRadius="6" Direction="270" Opacity="0.5" />
 </Border.Effect>
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter TargetName="InnerBorder"
 Property="Background" Value="{StaticResource
 SemiTransparentLayeredButtonBackground}" />
 </Trigger>
 <Trigger Property="IsPressed" Value="True">
 <Setter TargetName="InnerBorder" Property="Background"
 Value="{StaticResource LayeredButtonBackground}" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Looking at the example XAML, we can see that the SnapsToDevicePixels property is set
to true, to avoid anti-aliasing artifacts blurring the edges of the button, and the Cursor
property is set to display the pointing finger cursor when the user's mouse is over the
button.

Within the control template, we see the two nested Border elements. Note that the outer
border uses the TransparentBlack and TransparentWhite brush resources so that it is
semi-transparent. Also, note that the white inner border actually comes from the
background of the outer border rather than the inner border, which sets the Margin
property to 1 to give the impression of an inner border.

Creating Visually Appealing User Interfaces Chapter 8

[374]

In this example, the inner border element is only responsible for displaying the layered
button elements from the visual brush and has no displayed border of its own. Again, we
have adjusted its CornerRadius property so that it fits neatly within the outer border. We
can zoom in on the magnification level in the WPF designer to help us to decide what
values we should use here.

Inside the inner border, we declare a Grid panel, so that we can add both the required
ContentPresenter and the Rectangle element that is painted with the GreenGlow brush
from the resources. Again, we set its IsHitTestVisible property to false, so that users
cannot interact with it and set the RadiusX and RadiusY properties to match the
CornerRadius value of the inner border.

We use TemplateBinding elements to map properties of the ContentPresenter object to
suitable properties from the templated object so that setting properties on our button can
affect its positioning and content. Next, we set the previously displayed
DropShadowEffect element to the Effect property of the outer border and that sums up
the contained UI elements in the template.

To make the template more useful, we have set some Trigger objects in the
ControlTemplate.Triggers collection, that will add mouse over effects for our button.
The first trigger targets the IsMouseOver property and sets the background of the inner
border to the slightly more transparent version of the layered button elements visual brush
when true.

The second trigger targets the IsPressed property and re-applies the original visual brush
when the property is true. Note that these two triggers must be defined in this order, so
that the one that targets the IsPressed property will override the other when both
conditions are true. It is of course, a matter of taste, whether the button lights up or goes
out when clicked, or perhaps even changes color.

Note that we omitted the x:Key directive on this style so that it will be implicitly applied to
all Button elements that do not have a different style explicitly applied to them. We are,
therefore, able to declare our Button elements without specifying the style, like the
following code snippet:

<Button Content="Click Me" Width="200" Height="40" FontSize="20"
 Foreground="White" />

Creating Visually Appealing User Interfaces Chapter 8

[375]

This results in the following visual output:

We could take this glowing idea further too, by defining a number of different color
resources and using data triggers inside a data template to change the color of the glow to
indicate different states of a data object. This enables us to provide further visual
information to the users, in addition to the usual textual feedback methods.

For example, a blue glow on a data Model object could specify an unchanged object, while
green could signify an object with valid changes and red could highlight an object in error.
We'll see how we can implement this idea in the next chapter, but for now, let's continue
looking at different ways to make our applications stand out from the crowd.

Moving away from the ordinary
The vast majority of business applications in general, look fairly ordinary, with various
form pages containing banks of standard rectangular form fields. Visually appealing
applications on the other hand, stand out from the crowd. Therefore, in order to create
visually appealing applications, we need to move away from the ordinary.

Whether this means simply adding control templates with rounded corners for our controls
or something more is up to you. There are many different ways that we can enhance the
look of our controls and we'll take a look at a number of these ideas in this section. Let's
start with a refection effect that is best suited for use with logos or startup and background
images.

Casting reflections
All FrameworkElement-derived classes have a RenderTransform property that we can
utilize to transform their rendered output in a variety of ways. A ScaleTransform element
enables us to scale each object in both horizontal and vertical directions. One useful facet
about the ScaleTransform object is that we can also scale negatively, and therefore
reverse the visual output.

Creating Visually Appealing User Interfaces Chapter 8

[376]

One visually pleasing effect that we can create with this particular facet is a mirror image,
or reflection, of the object. In order to enhance this effect, we can use an opacity mask to
fade out the reflection as it recedes from the object. This can give the visual impression of
an object being reflected on a shiny surface, as shown in the following image:

Let's see how we can achieve this result:

<StackPanel HorizontalAlignment="Center" VerticalAlignment="Center"
 Width="348">
 <TextBlock Name="TextBlock" FontFamily="Candara"
 Text="APPLICATION NAME" FontSize="40" FontWeight="Bold">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Color="Orange" />
 <GradientStop Color="Red" Offset="0.5" />
 <GradientStop Color="Orange" Offset="1" />
 </LinearGradientBrush>
 </TextBlock.Foreground>
 </TextBlock>
 <Rectangle Height="31" Margin="0,-11.6,0,0">
 <Rectangle.Fill>
 <VisualBrush Visual="{Binding ElementName=TextBlock}">
 <VisualBrush.RelativeTransform>
 <ScaleTransform ScaleY="-1.0" CenterX="0.5" CenterY="0.5" />
 </VisualBrush.RelativeTransform>
 </VisualBrush>
 </Rectangle.Fill>
 <Rectangle.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#DF000000" />
 <GradientStop Color="Transparent" Offset="0.8" />
 </LinearGradientBrush>
 </Rectangle.OpacityMask>
 </Rectangle>
</StackPanel>

Creating Visually Appealing User Interfaces Chapter 8

[377]

In this example, we use a StackPanel object to position a TextBlock element above a
Rectangle element. The text will be the object to reflect and the reflection will be
generated in the rectangle. The panel's width is constrained to ensure that the reflection fits
the text element exactly. We start by naming the TextBlock element and setting some
typeface properties, along with the text to output.

We've set a LinearGradientBrush object as the color for the text to make it more
interesting, although this plays no part in creating the reflection effect. Next, note that the
Rectangle element is sized and positioned exactly to fit the size of the text from the
TextBlock element. We can of course use this technique to reflect anything and are not
restricted to just reflecting text elements.

The background of the rectangle is painted with a VisualBrush object, where the Visual
property is data bound to the visual output of the TextBlock element, using the
ElementName property. Note the RelativeTransform property of the VisualBrush
object, enables us to transform the visual in some way and is set to an instance of the
ScaleTransform class.

This is one of the most important constituents for creating this effect, as this element is what
inverts the related visual in the vertical plane. Setting the ScaleY property to -1 will invert
the visual vertically for us, while setting the ScaleX property to -1 would invert the visual
horizontally. Note that we omit the ScaleX property here because we want it set at its
default value of 1.

Next, we see the OpacityMask property, which lets us set a gradient brush to be mapped
to the opacity of the rectangle. When the alpha channel of the brush is 1, the rectangle will
be opaque, when it is 0, the rectangle will be transparent and when it is in between, the
rectangle will be semi-transparent. This is the other essential part of this effect and creates
the fade of the reflected image.

In our example, we have a vertical gradient that is almost solid black at the top and gets
increasingly transparent until it reaches four fifths of the way down, where it becomes fully
transparent. When set as the rectangle's OpacityMask, only the alpha channel values are
used and this results in it being totally visible at the top and then fading to invisibility four
fifths of the way down, as shown in the preceding image.

Creating Visually Appealing User Interfaces Chapter 8

[378]

Exploring borderless windows
Using WPF, it is possible to create windows without borders, a title bar, and the standard
minimize, restore and close buttons. It is also possible to create irregular shaped windows
and windows with transparent areas that display whatever lies beneath. Although it would
be somewhat unconventional to make our main application window borderless, we can still
take advantage of this ability.

For example, we could create a borderless window for custom message boxes, or perhaps
for extended tooltips, or any other popup control that provides information to the end user.
Creating borderless windows can be achieved in a few simple steps. Let's start with the
basics and assume that we're adding this to our existing application framework.

In this case, we've already got our MainWindow class and need to add an additional
window. As we saw in Chapter 6, Adapting the Built-In Controls, we can do this by adding a
new UserControl to our project and replacing the word UserControl with the word
Window, in both the XAML file and its associated code behind file. Failure to change both will
result in a design time error that complains about mismatched classes.

Alternatively, we can right click on the start up project and select Add and then Window…,
and then cut and paste it wherever you want it to reside. Unfortunately, Visual Studio
provides no other way to add a Window control into our other projects.

Once we have our Window object, all we need to do is to set its WindowStyle property to
None and its AllowsTransparency property to true. This will result in the white
background of our window appearing:

<Window
 x:Class="CompanyName.ApplicationName.Views.Controls.BorderlessWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="100" Width="200" WindowStyle="None" AllowsTransparency="True">
</Window>

...

using System.Windows;

namespace CompanyName.ApplicationName.Views.Controls
{
 public partial class BorderlessWindow : Window
 {
 public BorderlessWindow()
 {
 InitializeComponent();

Creating Visually Appealing User Interfaces Chapter 8

[379]

 }
 }
}

However, while this removes the default window chrome that we are all used to and
provides us with a borderless window, it also removes the standard buttons, so we are
unable to close, resize, or even move the window directly. Luckily, making our window
moveable is a very simple matter. We just need to add the following line of code into our
window's constructor after the InitializeComponent method is called:

MouseLeftButtonDown += (o, e) => DragMove();

This DragMove method is declared within the Window class and enables us to click and
drag the window from anywhere within its bounds. We could easily recreate the normal
window functionality of only being able to move the window from the title bar by adding
our own title bar and attaching this anonymous event handler to that object's
MouseLeftButtonDown event instead.

If we want our borderless window to be resizable, there is a ResizeMode property in the
Window class that provides us with a few options. One value that we can use with our
borderless window is the CanResizeWithGrip value. This option adds a so-called resize
grip, specified by a triangular pattern of dots in the bottom right corner of the window, that
users can resize the window with.

If we set the ResizeMode property to this value and set the background to a color that will
contrast with this resize grip, we will end with this visual output:

However, we still have no way to close the window. For this, we could add our own
button, or perhaps enable the window to be closed by pressing the escape Esc key or some
other key on the keyboard. Either way, whatever the trigger, closing the window is a
simple matter of calling the window's Close method.

Creating Visually Appealing User Interfaces Chapter 8

[380]

Rather than implementing a replacement window chrome, which could be easily achieved
with a few borders, let's focus on developing a borderless window with an irregular shape,
that we could use to popup helpful information for the users. Ordinarily, we would need to
set the window's background to transparent to hide it, but we will be replacing its control
template, so we don't need to do this.

For this example, we don't need a resize grip either, so let's set the ResizeMode property to
NoResize. We also have no need to move this callout window by mouse, so we don't need
to add the anonymous event handler that calls the DragMove method.

As this window will only offer information to the user, we should also set a few other
window properties. One important property to set is the ShowInTaskbar property, which
specifies whether the application icon should appear in the Windows Taskbar or not. As
this window will be an integral part of our main application, we set this property to false,
so that its icon will be hidden.

Another useful property for this situation is the WindowStartupLocation property, which
enables the window to be positioned using the Window.Top and Window.Left properties.
In this way, the callout window can be programmatically positioned on screen anywhere
that it is needed. Before continuing any further, let's see the code for this window:

<Window x:Class="CompanyName.ApplicationName.Views.Controls.CalloutWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls=
 "clr-namespace:CompanyName.ApplicationName.Views.Controls"
 WindowStartupLocation="Manual">
 <Window.Resources>
 <Style TargetType="{x:Type Controls:CalloutWindow}">
 <Setter Property="ShowInTaskbar" Value="False" />
 <Setter Property="WindowStyle" Value="None" />
 <Setter Property="AllowsTransparency" Value="True" />
 <Setter Property="ResizeMode" Value="NoResize" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Controls:CalloutWindow}">
 <Grid Margin="0,0,0,12">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="5*" />
 </Grid.ColumnDefinitions>
 <Path Grid.ColumnSpan="2"
 Fill="{TemplateBinding Background}"
 Stroke="{TemplateBinding BorderBrush}"
 StrokeThickness="2" Stretch="Fill">

Creating Visually Appealing User Interfaces Chapter 8

[381]

 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Union">
 <CombinedGeometry.Geometry1>
 <PathGeometry>
 <PathFigure StartPoint="0,60">
 <LineSegment Point="50,45" />
 <LineSegment Point="50,75" />
 </PathFigure>
 </PathGeometry>
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry RadiusX="20" RadiusY="20"
 Rect="50,0,250,150" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
 </Path>
 <ContentPresenter Grid.Column="1"
 Content="{TemplateBinding Content}"
 HorizontalAlignment="{TemplateBinding
 HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding
 VerticalContentAlignment}"
 Margin="{TemplateBinding Padding}">
 <ContentPresenter.Resources>
 <Style TargetType="{x:Type TextBlock}">
 <Setter Property="TextWrapping" Value="Wrap" />
 </Style>
 </ContentPresenter.Resources>
 </ContentPresenter>
 <Grid.Effect>
 <DropShadowEffect Color="Black"
 Direction="270" ShadowDepth="7" Opacity="0.3" />
 </Grid.Effect>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Window.Resources>
</Window>

While this example is not overly long, there is a lot to discuss here. In order to clarify the
situation somewhat, let's also see the code behind before we examine this code:

using System.Windows;
using System.Windows.Media;

Creating Visually Appealing User Interfaces Chapter 8

[382]

namespace CompanyName.ApplicationName.Views.Controls
{
 public partial class CalloutWindow : Window
 {
 static CalloutWindow()
 {
 BorderBrushProperty.OverrideMetadata(typeof(CalloutWindow),
 new FrameworkPropertyMetadata(
 new SolidColorBrush(Color.FromArgb(255, 238, 156, 88))));
 HorizontalContentAlignmentProperty.OverrideMetadata(
 typeof(CalloutWindow),
 new FrameworkPropertyMetadata(HorizontalAlignment.Center));
 VerticalContentAlignmentProperty.OverrideMetadata(
 typeof(CalloutWindow),
 new FrameworkPropertyMetadata(VerticalAlignment.Center));
 }

 public CalloutWindow()
 {
 InitializeComponent();
 }

 public new static readonly DependencyProperty BackgroundProperty =
 DependencyProperty.Register(nameof(Background), typeof(Brush),
 typeof(CalloutWindow),
 new PropertyMetadata(new LinearGradientBrush(Colors.White,
 Color.FromArgb(255, 250, 191, 143), 90)));

 public new Brush Background
 {
 get { return (Brush)GetValue(BackgroundProperty); }
 set { SetValue(BackgroundProperty, value); }
 }
 }
}

This code-behind file is simpler than the XAML file, so let's quickly walk through it first.
We added a static constructor in order to call the OverrideMetadata method on a few pre-
existing Dependency Properties. This enables us to override the default settings of these
properties, and we do this in a static constructor because we want to run this code just once
per class and because it is called before any other constructor or method in the class.

In this constructor, we override the metadata for the BorderBrush property, in order to set
a default border color for our callout window. We do the same for both the
HorizontalContentAlignment and VerticalContentAlignment properties to ensure
that the window content will be centered by default. By doing this, we are re-using these
existing properties.

Creating Visually Appealing User Interfaces Chapter 8

[383]

However, we can also totally replace the pre-existing properties. As an example, we've
replaced the Background property to paint our callout background. In this case, we declare
our own Background property, specified by the new keyword, and set its own default
brush color. We then use that to paint the background of our callout shape, although we
could just as easily add another setter into our style to reuse the original Background
property.

Looking at the XAML code now, we can see the WindowStartupLocation property set in
the Window declaration, followed by a style in the window's Resources section. In this
style, we set the aforementioned properties and define the window's control template.
Inside the ControlTemplate object, we define a Grid panel. We'll return to this later, but
for now, note that there is a nine pixel margin set on the bottom of the panel.

Next, note that the panel has two star-sized ColumnDefinition elements declared, one
with a width of * and another with a width of 5*. If we add these together, we end with a
total width of six equal divisions. This means that the first column will be one sixth of the
total width of the window and the second column will take up the remaining five sixths.
We will soon see why this is set as it is.

Inside the Grid panel, we first declare the Path element that is used to define the shape of
our callout. We set the Grid.ColumnSpan property on it to 2, to ensure that it takes all of
the space of the parent window. Next, we set our new Background property to the Fill
property, so that users of our window can set Background property and have that brush
paint just the background of our path.

We also set the Stroke property of the Path element to the overridden BorderBrush
property and although we didn't, we could have exposed the StrokeThickness property
by declaring another Dependency Property. Note that we use TemplateBinding elements
to access the properties of the window, as they are the most efficient in this particular case.

Take special note of the Path.Stretch property, which we have set to Fill and defines
how the shape should fill the space that it is provided with. Using this Fill value specifies
that the content should fill all of the available space, rather than preserve its originally
defined aspect ratio. However, if we want to preserve the aspect ratio, then we can change
this property to the Uniform value instead.

The most important part of the path is found in the Path.Data section. This defines the
shape of the rendered path and like our layered background example, we utilize a
CombinedGeometry element here to combine two separate geometries. Unlike the previous
example, here we use a GeometryCombineMode value of Union, which renders the output
of both geometry shapes together.

Creating Visually Appealing User Interfaces Chapter 8

[384]

In the CombinedGeometry.Geometry1 element, we declare a PathGeometry object with a
PathFigure element that has a starting point and two LineSegment elements. Together
with the starting point, these two elements form the triangular section of our callout, that
points to the area on the screen that our window's information relates to. Note that this
triangle is fifty pixels wide in the path.

In the CombinedGeometry.Geometry2 element, we declare a RectangleGeometry object,
with its size specified by the Rect property and the size of its rounded corners being
specified by the RadiusX and RadiusY properties. The rectangle is positioned fifty pixels
away from the left edge and its width is two hundred and fifty pixels wide.

The overall area taken up by the rectangle and the triangle is therefore three
hundred pixels. One sixth of three hundred is fifty and this is how wide the triangle in our
shape is. This explains why our first Grid column is set to take one sixth of the total space.

After the Path object, we declare the ContentPresenter element that is required to
output the actual content of the window and set it to be in the second column of the panel.
In short, this column is used to position the ContentPresenter element directly over the
rectangular section of our shape, avoiding the triangular section.

In the ContentPresenter element, we data bind several positional properties to the
relevant properties of the window using TemplateBinding elements. We also data bind its
Content property to the Content property of the window using another
TemplateBinding element.

Note that we could have declared our UI controls directly within the Window control.
However, had we done that, then we would not be able to data bind to its Content
property in this way, as setting it externally would replace all of our declared XAML
controls, including the ContentPresenter object. By providing a new template, we are
totally overriding the default behavior of the window.

Also note that we have declared a style in the Resources section of the
ContentPresenter element. This style has been declared without the x:Key directive.
This is so that it will be implicitly applied to all TextBlock objects within scope,
specifically to affect the TextBlock objects that the ContentPresenter element will
automatically generate for string values, while not affecting others.

The style sets the TextBlock.TextWrapping property to the Wrap member of the
TextWrapping enumeration, which has the effect of wrapping long text lines onto the
following lines. The default setting is NoWrap, which would result in long strings not being
fully displayed in our window.

Creating Visually Appealing User Interfaces Chapter 8

[385]

Finally, we come to the end of the XAML example and find a DropShadowEffect object
set as the Effect property of the Grid panel. As with all shadow effects, we set the Color
property to black and the Opacity property to a value less or equal to 0.5. The Direction
property is set to 270, which produces a shadow that lies directly underneath our callout
shape.

Note that we set the ShadowDepth property to a value of 7. Now, do you remember the bottom
margin that was set on the grid? That was set to a value just above this value and was to
ensure that enough space was left in the window to display our shadow underneath our
callout shape. Without this, the shadow would sit outside the bounding box of the window
and not be displayed.

If we had set a different value for the Direction property, then we would need to adjust
the Grid panel's margin to ensure that it left enough space around the window to display
the shadow in its new location. Let's now take a look at how we could use our new
window:

CalloutWindow calloutWindow = new CalloutWindow();
calloutWindow.Width = 225;
calloutWindow.Height = 120;
calloutWindow.FontSize = 18;
calloutWindow.Padding = new Thickness(20);
calloutWindow.Content = "Please fill in the first line of your address.";
calloutWindow.Show();

Running this code from a suitable location would result in the following rendered output:

In our window-showing code, we set a string to the Content property of the window.
However, this property is of type object, so we can add any object as its value. In the
same way that we set our View Model instances to the Content property of a
ContentControl earlier in this book, we can also do that with our window.

Creating Visually Appealing User Interfaces Chapter 8

[386]

Given a suitable DataTemplate that defines some UI for a particular custom object type,
we could set an instance of that object to our window's Content property and have the
controls from that template rendered within our callout window, so we are not restricted to
only using type string for content here. Let's use a previous example:

calloutWindow.DataContext = new UsersViewModel();

With a few slight adjustments to our calloutWindow dimension properties, we would see
this:

Visualizing data
While there are a number of pre-existing graph controls and third party data visualization
controls available in WPF, we can create our own relatively easily. Expressing data in
textual terms alone, while generally acceptable, is not optimal. Breaking the norm in an
application always makes that application stand out from the rest that strictly adheres to
the standard.

As an example, imagine a simple situation, where we have a dashboard that visualizes the
number of work tasks that have come in and the number that have been completed. We
could just output the numbers in a big, bold font, but that would be the normal kind of
output. What about if we visualized each number as a shape, with its size being specified by the
number?

Creating Visually Appealing User Interfaces Chapter 8

[387]

Let's reuse our layering techniques from earlier and design some visually appealing
spheres, that grow in size depending upon a particular value. To do this, we can create
another custom control, with a Value Dependency Property to data bind to. Let's first look
at the code of the Sphere class:

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Shapes;
using CompanyName.ApplicationName.CustomControls.Enums;
using MediaColor = System.Windows.Media.Color;

namespace CompanyName.ApplicationName.CustomControls
{
 [TemplatePart(Name = "PART_Background", Type = typeof(Ellipse))]
 [TemplatePart(Name = "PART_Glow", Type = typeof(Ellipse))]
 public class Sphere : Control
 {
 private RadialGradientBrush greenBackground =
 new RadialGradientBrush(new GradientStopCollection() {
 new GradientStop(MediaColor.FromRgb(0, 254, 0), 0),
 new GradientStop(MediaColor.FromRgb(1, 27, 0), 0.974) });
 private RadialGradientBrush greenGlow =
 new RadialGradientBrush(new GradientStopCollection() {
 new GradientStop(MediaColor.FromArgb(205, 67, 255, 46), 0),
 new GradientStop(MediaColor.FromArgb(102, 88, 254, 72), 0.426),
 new GradientStop(MediaColor.FromArgb(0, 44, 191, 32), 1) });
 private RadialGradientBrush redBackground =
 new RadialGradientBrush(new GradientStopCollection() {
 new GradientStop(MediaColor.FromRgb(254, 0, 0), 0),
 new GradientStop(MediaColor.FromRgb(27, 0, 0), 0.974) });
 private RadialGradientBrush redGlow =
 new RadialGradientBrush(new GradientStopCollection() {
 new GradientStop(MediaColor.FromArgb(205, 255, 46, 46), 0),
 new GradientStop(MediaColor.FromArgb(102, 254, 72, 72), 0.426),
 new GradientStop(MediaColor.FromArgb(0, 191, 32, 32), 1) });

 static Sphere()
 {
 DefaultStyleKeyProperty.OverrideMetadata(typeof(Sphere),
 new FrameworkPropertyMetadata(typeof(Sphere)));
 }

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(nameof(Value), typeof(double),
 typeof(Sphere), new PropertyMetadata(50.0));

Creating Visually Appealing User Interfaces Chapter 8

[388]

 public double Value
 {
 get { return (double)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

 public static readonly DependencyProperty ColorProperty =
 DependencyProperty.Register(nameof(Color), typeof(SphereColor),
 typeof(Sphere), new PropertyMetadata(SphereColor.Green,
 OnColorChanged));

 public SphereColor Color
 {
 get { return (SphereColor)GetValue(ColorProperty); }
 set { SetValue(ColorProperty, value); }
 }

 private static void OnColorChanged(DependencyObject
 dependencyObject, DependencyPropertyChangedEventArgs e)
 {
 ((Sphere)dependencyObject).SetEllipseColors();
 }

 public override void OnApplyTemplate()
 {
 SetEllipseColors();
 }

 private void SetEllipseColors()
 {
 Ellipse backgroundEllipse =
 GetTemplateChild("PART_Background") as Ellipse;
 Ellipse glowEllipse = GetTemplateChild("PART_Glow") as Ellipse;
 if (backgroundEllipse != null) backgroundEllipse.Fill =
 Color == SphereColor.Green ? greenBackground : redBackground;
 if (glowEllipse != null) glowEllipse.Fill =
 Color == SphereColor.Green ? greenGlow : redGlow;
 }
 }
}

As this class will declare its own Color property, we start by adding a MediaColor using
alias directive, which we'll just use as a shortcut to accessing the methods of
the System.Windows.Media.Color class, when declaring the brushes that will be used in
the Sphere class.

Creating Visually Appealing User Interfaces Chapter 8

[389]

From the class declaration, we can see that there are two named parts specified in
TemplatePartAttribute attributes. These specify that the two mentioned Ellipse
elements are required in our control's template in the Generic.xaml file. Inside the class,
we define a number of RadialGradientBrush resources to paint our spheres with.

In the static constructor, we call the OverrideMetadata method to let the Framework
know where our control's default style is. We then see the declaration of the Value and
Color Dependency Properties, with the Color property's related
PropertyChangedCallback hander method.

In this OnColorChanged method, we cast the dependencyObject input parameter to an
instance of our Sphere class and call its SetEllipseColors method. In that method, we
use the FrameworkElement.GetTemplateChild method to access the two main Ellipse
objects from our ControlTemplate element.

Remember that we must always check these objects for null, as our ControlTemplate
could have been replaced with one that does not contain these ellipse elements. If they are
not null, we set their Fill properties to one of our brush resources using the ternary
operator and depending upon the value of our Color property.

One alternative for creating this functionality would be to declare a Dependency Property
of type Brush to data bind to each ellipse's Fill property and to set the relevant brush
resources to these properties, instead of accessing the XAML elements directly. Before
viewing the control's default style, let's see the SphereColor enumeration that is used by
the Color property:

namespace CompanyName.ApplicationName.CustomControls.Enums
{
 public enum SphereColor
 {
 Green, Red
 }
}

As you can see, this is a simple affair and could be easily extended. Note that this
enumeration has been declared within the CustomControls namespace and project, so
that the project is self-contained and can be reused in other applications without any
external dependencies. Let's take a look at our control's default style from Generic.xaml
now:

<Style TargetType="{x:Type CustomControls:Sphere}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type CustomControls:Sphere}">

Creating Visually Appealing User Interfaces Chapter 8

[390]

 <ControlTemplate.Resources>
 <DropShadowEffect x:Key="Shadow" BlurRadius="10"
 Direction="270" ShadowDepth="7" Opacity="0.5" />
 <LinearGradientBrush x:Key="Reflection"
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#90FFFFFF" Offset="0.009" />
 <GradientStop Color="#2DFFFFFF" Offset="0.506" />
 <GradientStop Offset="0.991" />
 </LinearGradientBrush>
 </ControlTemplate.Resources>
 <Grid Height="{Binding Value,
 RelativeSource={RelativeSource TemplatedParent}}"
 Width="{Binding Value,
 RelativeSource={RelativeSource TemplatedParent}}">
 <Grid.RowDefinitions>
 <RowDefinition Height="5*" />
 <RowDefinition Height="2*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="8*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Ellipse Name="PART_Background" Grid.RowSpan="2"
 Grid.ColumnSpan="3" Stroke="#FF1B0000"
 Effect="{StaticResource Shadow}" />
 <Ellipse Name="PART_Glow" Grid.RowSpan="2"
 Grid.ColumnSpan="3" />
 <Ellipse Grid.Column="1" Margin="0,2,0,0"
 Fill="{StaticResource Reflection}" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

When looking at our control's default template, we can see some of resources defined in the
ControlTemplate.Resources section. We first declare a DropShadowEffect element,
similar to our previous uses of this class. Next, we define a vertical LinearGradientBrush
element, to use as a light reflection layer, in a similar way to our earlier example.

Creating Visually Appealing User Interfaces Chapter 8

[391]

Previously, we saw that the default value of the GradientStop.Offset property is zero
and so, we can omit the setting of this property if that is the value that we need to use. In
this brush resource, we see that the last GradientStop element has no Color value
specified. This is because its default value of this property is Transparent and that is the
value that we need to use here.

In the actual markup for our control, we declare three Ellipse objects within a Grid panel.
Two of these elements are named and referenced in the control's code, while the third
ellipse uses the brush from resources to create the "shine" on top of the other ellipses. The
panel's size properties are data bound to the Value Dependency Property, using a
TemplatedParent source.

Note that we have used the star-sizing capabilities of the Grid panel to both position and
size our ellipse elements, with the exception of the two pixels in the top margin specified on
the reflection ellipse. In this way, our control can be any size and the positioning of the
various layers will remain visually correct. Note that we could not achieve this by hard
coding exact margin values for each element.

Let's see how we could use this in a simple View:

<Grid TextElement.FontSize="28" TextElement.FontWeight="Bold" Margin="20">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <CustomControls:Sphere Color="Red" Value="{Binding InCount}"
 VerticalAlignment="Bottom" />
 <CustomControls:Sphere Grid.Column="1" Value="{Binding OutCount}"
 VerticalAlignment="Bottom" />
 <TextBlock Grid.Row="1" Text="{Binding InCount}"
 HorizontalAlignment="Center" Margin="0,10,0,0" />
 <TextBlock Grid.Row="1" Grid.Column="1" Text="{Binding OutCount}"
 HorizontalAlignment="Center" Margin="0,10,0,0" />
</Grid>

Creating Visually Appealing User Interfaces Chapter 8

[392]

This is how our example looks when rendered:

As you can see, WPF is very powerful and enables us to create completely original looking
controls. However, we can also use it to recreate more commonly seen controls. As an
example, let's see how we can create an alternative control to gauge how close we may be to
our particular target value:

Creating Visually Appealing User Interfaces Chapter 8

[393]

This example features a semi-circular arc, which is something that does not exist in a form
that is usable from XAML, so we'll first create an Arc control to use internally within our
Gauge control. Let's see how we can achieve this by adding a new custom control:

using System;
using System.Windows;
using System.Windows.Media;
using System.Windows.Shapes;

namespace CompanyName.ApplicationName.CustomControls
{
 public class Arc : Shape
 {
 public static readonly DependencyProperty StartAngleProperty =
 DependencyProperty.Register(nameof(StartAngle), typeof(double),
 typeof(Arc), new FrameworkPropertyMetadata(180.0,
 FrameworkPropertyMetadataOptions.AffectsRender));

 public double StartAngle
 {
 get { return (double)GetValue(StartAngleProperty); }
 set { SetValue(StartAngleProperty, value); }
 }

 public static readonly DependencyProperty EndAngleProperty =
 DependencyProperty.Register(nameof(EndAngle), typeof(double),
 typeof(Arc), new FrameworkPropertyMetadata(0.0,
 FrameworkPropertyMetadataOptions.AffectsRender));

 public double EndAngle
 {
 get { return (double)GetValue(EndAngleProperty); }
 set { SetValue(EndAngleProperty, value); }
 }

 protected override Geometry DefiningGeometry
 {
 get { return GetArcGeometry(); }
 }

 private Geometry GetArcGeometry()
 {
 Point startPoint = ConvertToPoint(Math.Min(StartAngle, EndAngle));
 Point endPoint = ConvertToPoint(Math.Max(StartAngle, EndAngle));
 Size arcSize = new Size(Math.Max(0, (RenderSize.Width -
 StrokeThickness) / 2), Math.Max(0, (RenderSize.Height -
 StrokeThickness) / 2));
 bool isLargeArc = Math.Abs(EndAngle - StartAngle) > 180;

Creating Visually Appealing User Interfaces Chapter 8

[394]

 StreamGeometry streamGeometry = new StreamGeometry();
 using (StreamGeometryContext context = streamGeometry.Open())
 {
 context.BeginFigure(startPoint, false, false);
 context.ArcTo(endPoint, arcSize, 0, isLargeArc,
 SweepDirection.Counterclockwise, true, false);
 }
 streamGeometry.Transform =
 new TranslateTransform(StrokeThickness / 2, StrokeThickness / 2);
 streamGeometry.Freeze();
 return streamGeometry;
 }

 private Point ConvertToPoint(double angleInDegrees)
 {
 double angleInRadians = angleInDegrees * Math.PI / 180;
 double radiusX = (RenderSize.Width - StrokeThickness) / 2;
 double radiusY = (RenderSize.Height - StrokeThickness) / 2;
 return new Point(radiusX * Math.Cos(angleInRadians) + radiusX,
 radiusY * Math.Sin(-angleInRadians) + radiusY);
 }
 }
}

Note that we extend the Shape class when creating our Arc class. We do this because it
provides us with a wide variety of stroke and fill properties and also the apparatus to
render our custom shape from a Geometry object. Additionally, users of our Arc control
will also be able to take advantage of the Shape class' transformation abilities through its
Stretch and GeometryTransform properties.

To draw our arc, we will use the ArcTo method of the StreamGeometryContext class and
with it, we need to specify exact Point values for its start and end. However, in order to
reflect the correct value in the size of our arc, it is easier to define it using angle values for
its start and end.

Therefore, we add StartAngle and EndAngle Dependency Properties to our Arc class.
Note that these two properties are declared with
the FrameworkPropertyMetadataOptions.AffectsRender member. This notifies the
Framework that changes to these properties need to cause a new rendering pass, so new
values will be accurately represented in the control.

After these property declarations, we see the overridden DefiningGeometry property,
that enables us to return a Geometry object that defines the shape to be rendered. We
simply return the result from the GetArcGeometry method from this property.

Creating Visually Appealing User Interfaces Chapter 8

[395]

In the GetArcGeometry method, we obtain the required start and end Point elements
from the ConvertToPoint method, passing in the StartAngle and EndAngle property
values. Note that we use the Min and Max methods of the Math class here to ensure that the
start point is calculated from the smaller angle and the end point is calculated from the
larger angle.

Our arc shape's fill will actually come from the geometric arc's stroke, so we will not be able
to add a stroke to it. In WPF, the stroke of a shape with a thickness of one pixel will extend
no further than the shape's bounding box. However, at the furthest point, strokes with
larger thickness values are rendered so that their center remains on the line of the bounding
box also therefore, half of it will extend outside the bounds of the element and half will be
rendered within the bounds:

Therefore, we calculate the size of the arc by dividing the RenderSize value minus the
StrokeThickness value by two. This will reduce the size of the arc so that it remains
totally within the bounds of our control. We make use of the Math.Max method to ensure
that the values that we pass to the Size class are never less than zero and avoid exceptions.

When using the ArcTo method, we need to specify a value that determines whether we
want to connect our start and end points with a short arc or a long one. Our isLargeArc
variable therefore determines whether the two specified angles would produce an arc of
more than one hundred and eighty degrees or not.

Next, we create a StreamGeometry object and retrieve a StreamGeometryContext object
from its Open method, with which to define our geometric shape. Note that we could
equally use a PathGeometry object here, but as we do not need its data binding, animation,
or other abilities, we use the more efficient StreamGeometry object instead.

Creating Visually Appealing User Interfaces Chapter 8

[396]

We enter the arc's start point in the BeginFigure method and the remaining parameters in
the ArcTo method. Note that we call these methods on our StreamGeometryContext
object from within a using statement to ensure that it is closed and disposed of properly,
once we are finished with it.

Next, we apply a TranslateTransform element to the Transform property of the
StreamGeometry object in order to shift the arc so that it is fully contained within our
control. Without this step, our arc would stick out of the bounding box of our control to the
upper left, by the amount of half of the StrokeThickness property value.

Once we have finished manipulating our StreamGeometry object, we call its Freeze
method, which makes it unmodifiable and rewards us with additional performance
benefits. We'll find out more about this in Chapter 11, Improving Application
Performance, but for now, let's continue looking through this example.

Finally, we get to the ConvertToPoint method, which converts the values of our two
angle Dependency Properties into two-dimensional Point objects. Our first job is to
convert each angle from degrees into radians, as the methods of the Math class that we need
to use require radian values.

Next, we calculate the two radii of our arc using half of the RenderSize value minus the
StrokeThickness property value, so that the size of the arc does not exceed the bounding
box of our Arc control. Finally, we perform some basic trigonometry using the Math.Cos
and Math.Sin methods when calculating the Point element to return.

That completes our simple Arc control and so now, we can utilize this new class in our
Gauge control. We'll need to create another new custom control for it, so let's first see the
properties and code in our new Gauge class:

using System.Windows;
using System.Windows.Controls;

namespace CompanyName.ApplicationName.CustomControls
{
 public class Gauge : Control
 {
 static Gauge()
 {
 DefaultStyleKeyProperty.OverrideMetadata (typeof(Gauge),
 new FrameworkPropertyMetadata(typeof(Gauge)));
 }

 public static readonly DependencyPropertyKey valueAnglePropertyKey =
 DependencyProperty.RegisterReadOnly(nameof(ValueAngle),

Creating Visually Appealing User Interfaces Chapter 8

[397]

 typeof(double), typeof(Gauge), new PropertyMetadata(180.0));

 public static readonly DependencyProperty ValueAngleProperty =
 valueAnglePropertyKey.DependencyProperty;

 public double ValueAngle
 {
 get { return (double)GetValue(ValueAngleProperty); }
 private set { SetValue(valueAnglePropertyKey, value); }
 }

 public static readonly DependencyPropertyKey
 rotationAnglePropertyKey = DependencyProperty.RegisterReadOnly(
 nameof(RotationAngle), typeof(double), typeof(Gauge),
 new PropertyMetadata(180.0));

 public static readonly DependencyProperty RotationAngleProperty =
 rotationAnglePropertyKey.DependencyProperty;

 public double RotationAngle
 {
 get { return (double)GetValue(RotationAngleProperty); }
 private set { SetValue(rotationAnglePropertyKey, value); }
 }

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(nameof(Value), typeof(double),
 typeof(Gauge), new PropertyMetadata(0.0, OnValueChanged));

 private static void OnValueChanged(DependencyObject
 dependencyObject, DependencyPropertyChangedEventArgs e)
 {
 Gauge gauge = (Gauge)dependencyObject;
 if (gauge.MaximumValue == 0.0)
 gauge.ValueAngle = gauge.RotationAngle = 180.0;
 else if ((double)e.NewValue > gauge.MaximumValue)
 {
 gauge.ValueAngle = 0.0;
 gauge.RotationAngle = 360.0;
 }
 else
 {
 double scaledPercentageValue =
 ((double)e.NewValue / gauge.MaximumValue) * 180.0;
 gauge.ValueAngle = 180.0 - scaledPercentageValue;
 gauge.RotationAngle = 180.0 + scaledPercentageValue;
 }
 }

Creating Visually Appealing User Interfaces Chapter 8

[398]

 public double Value
 {
 get { return (double)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

 public static readonly DependencyProperty MaximumValueProperty =
 DependencyProperty.Register(nameof(MaximumValue), typeof(double),
 typeof(Gauge), new PropertyMetadata(0.0));

 public double MaximumValue
 {
 get { return (double)GetValue(MaximumValueProperty); }
 set { SetValue(MaximumValueProperty, value); }
 }

 public static readonly DependencyProperty TitleProperty =
 DependencyProperty.Register(nameof(Title), typeof(string),
 typeof(Gauge), new PropertyMetadata(string.Empty));

 public string Title
 {
 get { return (string)GetValue(TitleProperty); }
 set { SetValue(TitleProperty, value); }
 }
 }
}

As usual, we start by overriding the metadata of the DefaultStyleKeyProperty for our
control type in the static constructor, to help the Framework find where its default style is
defined. We then declare the internal, read-only ValueAngle and
RotationAngle Dependency Properties and the regular public Value, MaximumValue,
and Title Dependency Properties.

We declare a PropertyChangedCallback hander for the Value property, and, in that
method, we first cast the dependencyObject input parameter to an instance of our Gauge
class. If the value of the MaximumValue property is zero, then we simply set both of the
ValueAngle and RotationAngle properties to 180.0, which results in the arc and needle
being displayed in their start positions, on the left.

If the new value of the data bound Value property is more than the value of the
MaximumValue property, then we make the arc and needle display in their end, or full,
positions to the right. We do this by setting the ValueAngle property to 0.0 and the
RotationAngle property to 360.0.

Creating Visually Appealing User Interfaces Chapter 8

[399]

If the new value of the Value property is valid, then we calculate the
scaledPercentageValue variable. We do this by first dividing the new value by the
value of the MaximumValue property, to get the percentage of the maximum value. We
then multiply that figure by 180.0, because our gauge covers a range of one hundred and
eighty degrees.

We then subtract the scaledPercentageValue variable value from 180.0 for the
ValueAngle property and add it to 180.0 for the RotationAngle property. This is
because the ValueAngle property is used by our arc and needs to be between 180.0 and
0.0, and the RotationAngle property is used by our gauge needle and needs to be
between 180.0 and 360.0.

This will soon be made clearer, so let's now see how we use these properties and the Arc
control in our Gauge control's default style from the Generic.xaml file:

<Style TargetType="{x:Type CustomControls:Gauge}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type CustomControls:Gauge}">
 <Grid Background="{Binding Background,
 RelativeSource={RelativeSource TemplatedParent}}">
 <Grid Margin="{Binding Padding,
 RelativeSource={RelativeSource TemplatedParent}}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="{Binding Title,
 RelativeSource={RelativeSource TemplatedParent}}"
 HorizontalAlignment="Center" />
 <Canvas Grid.Row="1" Width="300" Height="150"
 HorizontalAlignment="Center" Margin="0,5">
 <CustomControls:Arc Width="300" Height="300"
 StrokeThickness="75" Stroke="#FF444444" />
 <CustomControls:Arc Width="300" Height="300"
 StrokeThickness="75" Stroke="OrangeRed" StartAngle="180"
 EndAngle="{Binding AngleValue,
 RelativeSource={RelativeSource TemplatedParent}}" />
 <Path Canvas.Left="150" Canvas.Top="140"
 Fill="White" StrokeThickness="5" Stroke="White"
 StrokeLineJoin="Round" Data="M0,0 L125,10, 0,20Z"
 Stretch="Fill" Width="125" Height="20">
 <Path.RenderTransform>
 <RotateTransform Angle="{Binding RotationAngle,
 RelativeSource={RelativeSource TemplatedParent}}"

Creating Visually Appealing User Interfaces Chapter 8

[400]

 CenterX="0" CenterY="10" />
 </Path.RenderTransform>
 </Path>
 </Canvas>
 <TextBlock Grid.Row="2" Text="{Binding Value, StringFormat=N0,
 RelativeSource={RelativeSource TemplatedParent}}"
 HorizontalAlignment="Center" FontWeight="Bold" />
 </Grid>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

We start our default style as usual, by specifying the type of our control in both the style
and the control template. Inside the template, we have two Grid panels and data bind the
Background property of the outer panel and the Margin property of the inner panel to
properties of our templated control, so that users can set them externally.

We then define three rows in our inner panel. The control's Title property is data bound
to a horizontally centered TextBlock element in the first row. In the second row, we
declare a horizontally centered Canvas panel that contains two of our new Arc controls
and a Path object.

The first Arc control is gray and represents the background track that the Arc that
represents our Gauge control's Value property sits on. The second Arc control is colored
OrangeRed and displays the current value of our Gauge control's Value property, by data
binding its EndAngle property to the AngleValue Dependency Property of the Gauge
control.

Note that the angles in our Arc control follow the common Cartesian coordinate system,
with an angle of zero degrees falling to the right and increasing values moving anti-
clockwise. Therefore, to draw a semi-circular arc from left to right, we start with an angle of
180 degrees and end at 0 degrees, as demonstrated by the background arc in our Gauge
control.

Furthermore, our Arc controls have the same width and height values, but as we don't
need their lower halves, we crop them using the height of the canvas panel. The Path object
represents the gauge needle in our control and is painted white.

We set the StrokeLineJoin property to the Round value in order to curve the three
corners, where the lines of the needle path meet. Note that the needle is positioned exactly
half way across the width of the canvas and ten pixels above the bottom, to enable its center
line to lie along the bottom of the canvas.

Creating Visually Appealing User Interfaces Chapter 8

[401]

Rather than declaring PathFigure and LineSegment objects to define the needle, we have
used the shorthand notation inline in the Data property. The M specifies that we should
move to (or start from) point 0,0, the L specifies that we want to draw a line to point
125,10 and then from there to point 0,20, and the Z means that we want to close the path
by joining the first and last points.

We then set the width and height of the path to the same values that were declared within
Data property. Now, the essential part of enabling this needle to point to the relevant
position to reflect the data bound Value property, is the RotateTransform object that is
applied to the path's RenderTransform property. Note that its center point is set to be the
center of the bottom of the needle, as that is the point that we want to rotate from.

As the RotateTransform object rotates clockwise with increasing Angle values, we
cannot reuse the AngleValue Dependency Property with it. Therefore, in this particular
example, we define the needle pointing to the right and use a range of 180.0 to
360.0 degrees in the RotationAngle read-only Dependency Property with the transform
object to match the position of the value arc.

At the end of the example, we see another horizontally centered TextBlock, element that
outputs the current, unaltered value of the data bound Value Dependency Property. Note
that we use the StringFormat value of N0 to remove the decimal places from the value
before displaying it.

That completes our new Gauge control and so, all we need to do now is see how we can use
it:

<CustomControls:Gauge Width="400" Height="300"
 MaximumValue="{Binding InCount}" Value="{Binding OutCount}"
 Title="Support Tickets Cleared" Foreground="White" FontSize="34"
 Padding="10" />

We could extend our new Gauge control to make it more usable in several ways. We could
add a MinimumValue Dependency Property to enable its use with value ranges that do not
start at zero, or we could expose further properties to enable users to color, size, or further
customize the control. Alternatively, we could rewrite it to enable it to be any size, instead
of hard coding sizes as we did previously.

Creating Visually Appealing User Interfaces Chapter 8

[402]

Livening up the UI controls
In addition to making our UI controls look visually appealing, we can also "liven them
up" by adding user interactivity in the form of mouse over effects. While most mouse over
effects are created using Trigger and Setter objects, that immediately update the
relevant style properties when the related trigger condition is met, we can alternatively use
animations to produce these effects.

Having even subtle transitions between states, rather than instantly switching, can also
provide a richer user experience. Let's reuse our initial double bordered example from
earlier and add some mouse interactivity animations to it to demonstrate this point. We'll
need to add a few more resources into a suitable resource collection and adjust a couple of
our previously declared resources too:

<Color x:Key="TransparentWhiteColor">#7FFFFFFF</Color>
<Color x:Key="TransparentBlackColor">#7F000000</Color>

Now that we have declared our semi-transparent Color resources, we can adjust our
earlier brush resources to utilize them:

<SolidColorBrush x:Key="TransparentWhite"
 Color="{StaticResource TransparentWhiteColor}" />
<SolidColorBrush x:Key="TransparentBlack"
 Color="{StaticResource TransparentBlackColor}" />

Let's view our full example now:

<Grid Width="160" Height="68">
 <Grid.Background>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="Red" />
 <GradientStop Color="Yellow" Offset="1" />
 </LinearGradientBrush>
 </Grid.Background>
 <Button Content="Click Me" Width="120" Height="28" FontSize="14"
 Margin="20">
 <Button.Template>
 <ControlTemplate TargetType="{x:Type Button}">
 <Border Name="OuterBorder"
 BorderBrush="{StaticResource TransparentBlack}"
 BorderThickness="1" Padding="1"
 Background="{StaticResource TransparentWhite}"
 CornerRadius="5" SnapsToDevicePixels="True">
 <Border Name="InnerBorder"
 BorderBrush="{StaticResource TransparentBlack}"
 BorderThickness="1" Background="White"

Creating Visually Appealing User Interfaces Chapter 8

[403]

 CornerRadius="3.5" SnapsToDevicePixels="True">
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard Storyboard.TargetName="OuterBorder"
 Storyboard.TargetProperty=
 "BorderBrush.(SolidColorBrush.Color)">
 <ColorAnimation To="Black" Duration="0:0:0.25" />
 </Storyboard>
 </BeginStoryboard>
 <BeginStoryboard>
 <Storyboard Storyboard.TargetName="InnerBorder"
 Storyboard.TargetProperty=
 "BorderBrush.(SolidColorBrush.Color)">
 <ColorAnimation To="Black" Duration="0:0:0.3" />
 </Storyboard>
 </BeginStoryboard>
 <BeginStoryboard Name="BackgroundFadeIn"
 HandoffBehavior="Compose">
 <Storyboard Storyboard.TargetName="InnerBorder"
 Storyboard.TargetProperty=
 "Background.(SolidColorBrush.Color)">
 <ColorAnimation To="{StaticResource
 TransparentWhiteColor}" Duration="0:0:0.2" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <BeginStoryboard>
 <Storyboard Storyboard.TargetName="OuterBorder"
 Storyboard.TargetProperty=
 "BorderBrush.(SolidColorBrush.Color)">
 <ColorAnimation To="{StaticResource
 TransparentBlackColor}" Duration="0:0:0.5" />
 </Storyboard>
 </BeginStoryboard>
 <BeginStoryboard>
 <Storyboard Storyboard.TargetName="InnerBorder"
 Storyboard.TargetProperty=
 "BorderBrush.(SolidColorBrush.Color)">
 <ColorAnimation To="{StaticResource
 TransparentBlackColor}" Duration="0:0:0.3" />
 </Storyboard>

Creating Visually Appealing User Interfaces Chapter 8

[404]

 </BeginStoryboard>
 <BeginStoryboard Name="BackgroundFadeOut"
 HandoffBehavior="Compose">
 <Storyboard Storyboard.TargetName="InnerBorder"
 Storyboard.TargetProperty=
 "Background.(SolidColorBrush.Color)">
 <ColorAnimation To="White" Duration="0:0:0.4" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.ExitActions>
 </Trigger>
 <Trigger Property="IsPressed" Value="True">
 <Trigger.EnterActions>
 <BeginStoryboard Name="MouseDownBackground"
 HandoffBehavior="Compose">
 <Storyboard Storyboard.TargetName="InnerBorder"
 Storyboard.TargetProperty=
 "Background.(SolidColorBrush.Color)">
 <ColorAnimation From="#D6FF21" Duration="0:0:1"
 DecelerationRatio="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 </Trigger>
 <EventTrigger RoutedEvent="Unloaded">
 <RemoveStoryboard BeginStoryboardName="BackgroundFadeIn" />
 <RemoveStoryboard BeginStoryboardName="BackgroundFadeOut" />
 <RemoveStoryboard BeginStoryboardName="MouseDownBackground" />
 </EventTrigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Button.Template>
 </Button>
</Grid>

While this example might seem quite long, it is actually fairly simple. We start with our
original control template, albeit with the previously hardcoded brush values being replaced
by our newly defined resources. The main difference with the original example is found in
the ControlTemplate.Triggers collection.

The first trigger will start its various storyboards when the IsMouseOver property of the
Button element is true, or in other words, when the user moves the mouse cursor over the
button. Our storyboards are split between the Trigger.EnterActions and
Trigger.ExitActions collections.

Creating Visually Appealing User Interfaces Chapter 8

[405]

Remember that the storyboards in the Trigger.EnterActions collection will be started as
the mouse enters the bounds of the button, while the storyboards in the
Trigger.ExitActions collection will be started as the mouse leaves the bounds of the
button. We declare three BeginStoryboard objects with their associated Storyboard
objects within each of these TriggerActionCollection objects.

The first animation targets the BorderBrush property of the OuterBorder element. Note
that this property is of type Brush, but there is no BrushAnimation class in WPF.
Therefore, we need to target the Color property of the SolidColorBrush that is actually
applied to this property and use a ColorAnimation object instead.

In order to do this, we need to use indirect targeting to first reference the BorderBrush
property and then to chain to the Color property using
the syntax BorderBrush.(SolidColorBrush.Color). Note that this will only work if we
are in fact using a SolidColorBrush element, as we are in this example.

However, if we were using one of the gradient brushes instead of a SolidColorBrush
element, we could target the various colors of its GradientStop elements with a slightly
different syntax. For example, we could target the color of the first GradientStop element
in a gradient brush like this:

BorderBrush.(GradientBrush.GradientStops)[0].(GradientStop.Color)

Returning to this example now, the second animation targets the BorderBrush property of
the InnerBorder element and follows the syntactical example of the first animation. While
the third animation also uses indirect targeting to reference the Background property of
the InnerBorder element, it is somewhat different to the other two animations.

For this animation, we name the BeginStoryboard object BackgroundFadeIn and set its
HandoffBehavior property to Compose, to enable smoother transitions between this and
the other animations of this property. The specified name will be used later in the example.

Note that these three ColorAnimation objects only have their To and Duration properties
set and that the three duration values are slightly different. This has the effect of slightly
thickening the effect, although synchronizing the times also works well.

We have omitted the From values on these animations to avoid situations where the current
animated colors do not match the From values and have to immediately jump to the
starting values before animating to the To values. By omitting these values, the animations
will start at their current color values and will result in smoother transitions.

Creating Visually Appealing User Interfaces Chapter 8

[406]

The three animations in the Trigger.ExitActions collection are very similar to those in
the EnterActions collection, albeit animating the colors back to their original starting
colors, so we can skip their explanation here. However, it is worth highlighting the fact that
the third animation is also declared in a named BeginStoryboard that has its
HandoffBehavior property set to Compose.

The next Trigger object will start its associated storyboard when the IsPressed property
of the Button element is true, and as it is declared within the EnterActions collection, it
will start when the user presses the mouse button down, rather than upon its release.

This animation also uses indirect targeting to reference the Background property of the
InnerBorder element and also has a named BeginStoryboard object with its
HandoffBehavior property set to Compose. Unlike the other animations, this one has an
extended duration and also sets the DecelerationRatio property to 1.0, which results in
quick start and slow end.

Finally, we reach the last trigger, which is an EventTrigger object that will be triggered
when the Button object is unloaded. In this trigger, we remove the three named
storyboards, thereby freeing the extra resources that they consume when using the
Compose handoff behavior. This was the sole purpose for naming the three
BeginStoryboard objects that reference the Background property.

When animating mouse over effects on buttons, we are not restricted to simply changing
the background and border colors. The more imaginative that we can be, the more our
applications will stand out from the crowd.

For example, rather than simply changing the background color of the button, we can
instead move the focal point of the gradient with the mouse. We'll need to use some code to
do this, so we'll need to create another custom control to demonstrate this point. Let's first
take a look at the code from our new custom control:

using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Input;
using System.Windows.Media;
using CompanyName.ApplicationName.CustomControls.Enums;

namespace CompanyName.ApplicationName.CustomControls
{
 [TemplatePart(Name = "PART_Root", Type = typeof(Grid))]
 public class GlowButton : ButtonBase
 {
 private RadialGradientBrush glowBrush = null;

Creating Visually Appealing User Interfaces Chapter 8

[407]

 static GlowButton()
 {
 DefaultStyleKeyProperty.OverrideMetadata (typeof(GlowButton),
 new FrameworkPropertyMetadata(typeof(GlowButton)));
 }

 public GlowMode GlowMode { get; set; } = GlowMode.FullCenterMovement;

 public static readonly DependencyProperty GlowColorProperty =
 DependencyProperty.Register(nameof(GlowColor), typeof(Color),
 typeof(GlowButton), new PropertyMetadata(
 Color.FromArgb(121, 71, 0, 255), OnGlowColorChanged));

 public Color GlowColor
 {
 get { return (Color)GetValue(GlowColorProperty); }
 set { SetValue(GlowColorProperty, value); }
 }
 private static void OnGlowColorChanged(
 DependencyObject dependencyObject,
 DependencyPropertyChangedEventArgs e)
 {
 ((GlowButton)dependencyObject).SetGlowColor((Color)e.NewValue);
 }

 public override void OnApplyTemplate()
 {
 Grid rootGrid = GetTemplateChild("PART_Root") as Grid;
 if (rootGrid != null)
 {
 rootGrid.MouseMove += Grid_MouseMove;
 glowBrush =
 (RadialGradientBrush)rootGrid.FindResource("GlowBrush");
 SetGlowColor(GlowColor);
 }
 }

 private void SetGlowColor(Color value)
 {
 GlowColor = Color.FromArgb(121, value.R, value.G, value.B);
 if (glowBrush != null)
 {
 GradientStop gradientStop = glowBrush.GradientStops[2];
 gradientStop.Color = GlowColor;
 }
 }

 private void Grid_MouseMove(object sender, MouseEventArgs e)

Creating Visually Appealing User Interfaces Chapter 8

[408]

 {
 Grid grid = (Grid)sender;
 if (grid.IsMouseOver && glowBrush != null)
 {
 Point mousePosition = e.GetPosition(grid);
 double x = mousePosition.X / ActualWidth;
 double y = GlowMode != GlowMode.HorizontalCenterMovement ?
 mousePosition.Y / ActualHeight : glowBrush.Center.Y;
 glowBrush.Center = new Point(x, y);
 if (GlowMode == GlowMode.HorizontalCenterMovement)
 glowBrush.GradientOrigin =
 new Point(x, glowBrush.GradientOrigin.Y);
 else if (GlowMode == GlowMode.FullCenterMovement)
 glowBrush.GradientOrigin = new Point(x, y);
 }
 }
 }
}

We start as usual, by adding the relevant references and declaring the PART_RootGrid
panel element as being a required part of the control template in the
TemplatePartAttribute attribute. As our custom control is a button, we extend the
ButtonBase class.

Next, we define the glowBrush field and set it to null. In the static constructor, we call the
OverrideMetadata method to inform the Framework of where our control's default style
is. We then declare a GlowMode CLR property of type GlowMode and set it to the default
FullCenterMovement member. Let's see the members of this GlowMode enumeration now:

namespace CompanyName.ApplicationName.CustomControls.Enums
{
 public enum GlowMode
 {
 NoCenterMovement, HorizontalCenterMovement, FullCenterMovement
 }
}

Returning to our GlowButton class, we also declare a GlowColor Dependency Property
and define a default purple color, a property changed handler and some CLR property
wrappers for it. In the OnGlowColorChanged handler method, we cast the
dependencyObject input parameter to our GlowButton class and call the SetGlowColor
method, passing in the new Color input value.

Creating Visually Appealing User Interfaces Chapter 8

[409]

Next, we see the OnApplyTemplate method that is called when the button element's
control template has been applied. In this method, we attempt to access the PART_Root
panel element using the GetTemplateChild method and check it for null. If it is not
null, we do a number of things.

First, we attach the Grid_MouseMove event handler method to the grid's MouseMove event.
Note that this is the way to attach event handlers to the UI elements that are declared in the
Generic.xaml file, as it has no related code behind file.

Next, we call the grid's FindResource method in order to access the GlowBrush resource
from its Resources section and set it to our local glowBrush field, as we will be
referencing it regularly. After this, we call the SetGlowColor method and pass in the
current GlowColor value.

We do this because the OnApplyTemplate method is generally called after the properties
have been set, but we are unable to update the brush resource until the template has been
applied. When writing custom controls, we often need to update properties from this
method, once the template has been applied.

Next is the SetGlowColor method and in it we first make the set color semi-transparent. If
the glowBrush variable is not null, we then access the third GradientStop element from
its GradientStops collection and set its Color property to the value of our GlowColor
property.

Note that the third GradientStop element represents the dominant color in this gradient
and so in this example, we are only updating this single element, in order to save space in
this book. This gives the overall impression of a complete color change, but anyone that
looks carefully will be able to see a dash of purple showing through from the other two
unchanged GradientStop elements. You may wish to extend this example to update the
whole GradientStops collection.

Next, we see the Grid_MouseMove event handling method that was attached to the
rootGrid variable in the OnApplyTemplate method. In it, we check that the mouse is
currently over the grid and that the glowBrush variable is not null. If these conditions are
true, we call the GetPosition method on the MouseEventArgs input parameter to get the
current position of the mouse.

Using the mouse position and the current value of the GlowMode property, we determine
the movement mode and update the position of the glowBrush field's Center and/or
GradientOrigin properties.

Creating Visually Appealing User Interfaces Chapter 8

[410]

This has the effect of moving the center and/or the focal point of the gradient with the
mouse cursor when it is over our glow button. Let's see the XAML in the Generic.xaml
file now:

<Style TargetType="{x:Type CustomControls:GlowButton}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type CustomControls:GlowButton}">
 <Grid Name="PART_Root">
 <Grid.Resources>
 <RadialGradientBrush x:Key="GlowBrush"
 RadiusY="0.622" Center="0.5,0.848"
 GradientOrigin="0.5,0.818" RadiusX="1.5">
 <RadialGradientBrush.RelativeTransform>
 <ScaleTransform x:Name="ScaleTransform"
 CenterX="0.5" CenterY="0.5" ScaleX="1.0" ScaleY="1.8" />
 </RadialGradientBrush.RelativeTransform>
 <GradientStop Color="#B9F6F2FF" />
 <GradientStop Color="#A9F4EFFF" Offset="0.099" />
 <GradientStop Color="{Binding GlowColor,
 RelativeSource={RelativeSource AncestorType={x:Type
 CustomControls:GlowButton}}}" Offset="0.608" />
 <GradientStop Offset="1" Color="#004700FF" />
 </RadialGradientBrush>
 <RadialGradientBrush x:Key="LayeredButtonBackgroundBrush"
 RadiusX="1.85" RadiusY="0.796" Center="1.018, -0.115"
 GradientOrigin="0.65,-0.139">
 <GradientStop Color="#FFCACACD" />
 <GradientStop Color="#FF3B3D42" Offset="1" />
 </RadialGradientBrush>
 <LinearGradientBrush x:Key="LayeredButtonCurveBrush"
 StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="#FF747475" Offset="0" />
 <GradientStop Color="#FF3B3D42" Offset="1" />
 </LinearGradientBrush>
 <Grid x:Key="LayeredButtonBackgroundElements">
 <Rectangle
 Fill="{StaticResource LayeredButtonBackgroundBrush}" />
 <Path StrokeThickness="0"
 Fill="{StaticResource LayeredButtonCurveBrush}">
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Intersect">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="-20,50.7" RadiusX="185"
 RadiusY="46" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry Rect="0,0,106,24" />

Creating Visually Appealing User Interfaces Chapter 8

[411]

 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
 </Path>
 </Grid>
 <VisualBrush x:Key="LayeredButtonBackground"
 Visual="{StaticResource LayeredButtonBackgroundElements}" />
 </Grid.Resources>
 <Border CornerRadius="3" BorderBrush="#7F000000"
 BorderThickness="1" Background="#7FFFFFFF"
 SnapsToDevicePixels="True">
 <Border CornerRadius="2" Margin="1"
 Background="{StaticResource LayeredButtonBackground}"
 SnapsToDevicePixels="True">
 <Grid>
 <Rectangle x:Name="Glow" IsHitTestVisible="False"
 RadiusX="2" RadiusY="2"
 Fill="{StaticResource GlowBrush}" Opacity="0" />
 <ContentPresenter Content="{TemplateBinding Content}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 </Border>
 </Border>
 <Grid.Triggers>
 <EventTrigger RoutedEvent="MouseEnter">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="Glow"
 Storyboard.TargetProperty="Opacity" To="1.0"
 Duration="0:0:0.5" DecelerationRatio="1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="MouseLeave">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="Glow"
 Storyboard.TargetProperty="Opacity" To="0.0"
 Duration="0:0:1" DecelerationRatio="1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="MouseDown">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="ScaleTransform"

Creating Visually Appealing User Interfaces Chapter 8

[412]

 Storyboard.TargetProperty="ScaleX" From="10.0"
 To="1.0" Duration="0:0:0.15" AccelerationRatio="0.5" />
 <DoubleAnimation Storyboard.TargetName="ScaleTransform"
 Storyboard.TargetProperty="ScaleY" From="10.0"
 To="1.8" Duration="0:0:0.15" AccelerationRatio="0.5" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Grid.Triggers>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Inside this ControlTemplate, we see the Grid named PART_Root, and, inside it, we see a
number of resources declared in its Resources section. Much of this XAML is taken up by
the same resources that we used in our layered button background example, so we can skip
their explanation.

There is however, one new resource of type RadialGradientBrush and named
GlowBrush. This is the brush that puts the color into our button. In particular, note that its
RelativeTransform property is set to a ScaleTransform element named
ScaleTransform and that its third GradientStop object is data bound to the GlowColor
property from our control.

In the actual template, we see our double Border elements with their
SnapsToDevicePixels properties set to true to ensure a sharp, rendered image. Again,
the outer border has a larger CornerRadius value than the inner border, to ensure their
tight fit together, and the inner border's background is painted with the
LayeredButtonBackground visual brush that we saw earlier.

Inside the inner border, we have a Grid panel that contains a Rectangle element and the
required ContentPresenter object. We use the GlowBrush resource to paint the
background of the rectangle and set its IsHitTestVisible property to false, so that it
takes no part in user interaction. Note that in this example, we set its Opacity property to
zero to make it initially invisible.

We data bind the button's Content and Padding properties to the Content and Margin
properties of the ContentPresenter element, respectively, and center it within the
control. That completes the visual markup for our glow button and now, we reach the all-
important Grid.Triggers collection, where we declare three EventTrigger objects to
trigger our mouse over effects.

Creating Visually Appealing User Interfaces Chapter 8

[413]

The first trigger starts its associated storyboard when the MouseEnter event is raised. Its
associated DoubleAnimation object animates the "glowing" rectangle's Opacity property
to 1.0 over half a second. Note that we omit the From property here, so that the Opacity
value will start animating from its current value, rather than jumping back to 0.0 each time
it starts the animation.

The second trigger starts its storyboard when the MouseLeave event is raised. Its
DoubleAnimation object animates the rectangle's Opacity property back to 0.0 over a
whole second. Note that we also omit the From property here so that the Opacity value
will start animating from its current value, rather than jumping to 1.0 each time it starts its
animation. This ensures a smoother transition.

The third trigger starts its storyboard when the MouseDown event is raised and it contains
two DoubleAnimation objects. They animate the ScaleX and ScaleY properties of the
ScaleTransform object from 10.0 to their usual values over one hundred and fifty
milliseconds, which produces an interesting effect when the user clicks the button.

Using the GlowColor and GlowMode properties, we can produce a wide range of buttons
and interaction effects. After defining the relevant XAML namespace in our View, we can
use this glow button example in the following way:

<CustomControls:GlowButton Content="Glowing button"
 GlowMode="NoCenterMovement" GlowColor="Red" FontSize="28"
 Foreground="White" Height="60" Width="275" />

When our example is run, it can produce mouse over effects, which vary depending on the
position of the mouse cursor, as shown in the following examples:

Creating Visually Appealing User Interfaces Chapter 8

[414]

The top left button illustrates the HorizontalCenterMovement mode, the top right shows
the FullCenterMovement mode and the bottom two highlight two mouse positions when
using the NoCenterMovement mode. The top two use the default color and the bottom two
were rendered using a GlowColor of Red. This reveals the differences between the various
GlowMode values in our example.

Summary
In this chapter, we investigated a number of techniques that we can use to improve the look
of our applications, from simply adding shadows to implementing far more complicated
layered visuals. We saw the importance of remaining consistent throughout our application
and how to get that professional look.

We then looked at more advanced techniques for making our application stand out from
the crowd and saw further examples of how to create a variety of custom controls. We
finished with a look at how we can incorporate animations into our everyday controls, in
order to bring about a sense of exclusivity to our applications.

In the following chapter, we're going to investigate a number of ways that we can validate
the data in our applications. We'll examine the various validation interfaces that are
available to us in WPF and work on extending our application framework with a complete
validation system using data annotations.

9
Implementing Responsive Data

Validation
Data validation goes hand in hand with data input forms and is essential for promoting
clean, usable data. While the UI controls in WPF can automatically corroborate the fact that
values entered match the type of their data bound properties, they cannot validate the
correctness of the data entered.

For example, a TextBox control that is data bound to an integer may highlight an error if a
user entered a non-numeric value, but it wouldn't validate the fact that the number
entered had the correct number of digits, or that the first four digits were appropriate for
the type of credit card specified.

In order to validate these types of data correctness when using MVVM, we'll need to
implement one of the .NET validation interfaces. In this chapter, we'll examine in detail the
available interfaces, looking at a number of implementations and explore the other
validation-related features that WPF provides us with. Let's start by looking at the
validation system.

In WPF, the validation system very much revolves around the static Validation class.
This class has several Attached Properties, methods, and an Attached Event that support
data validation. Each binding instance has a ValidationRules collection that can contain
ValidationRule elements.

WPF provides three built-in rules:

The ExceptionValidationRule object checks for any exceptions thrown as the
binding source property is updated.
The DataErrorValidationRule class checks for errors that may be raised by
classes that implement the IDataErrorInfo interface.
The NotifyDataErrorValidationRule class checks for errors raised by classes
that implement the INotifyDataErrorInfo interface.

Implementing Responsive Data Validation Chapter 9

[416]

Each time an attempt is made to update a data source property, the binding engine first
clears the Validation.Errors collection and then checks the binding's
ValidationRules collection to see whether it contains any ValidationRule elements. If
it does, it calls each rule's Validate method in turn until they all pass, or one returns an
error.

When a data bound value fails the condition in the Validation method of a
ValidationRule element, the binding engine adds a new ValidationError object to the
Validation.Errors collection of the data binding target control.

This, in turn, will set the Validation.HasError Attached Property of the element to true
and, if the NotifyOnValidationError property of the binding is set to true, the binding
engine will also raise the Validation.Error Attached Event on the data binding target.

Using validation rules – to do or not to do?
In WPF, there are two different approaches for dealing with data validation. On the one
hand, we have the UI-based ValidationRule classes, the Validation.Error Attached
Event, and the Binding.NotifyOnValidationError and
UpdateSourceExceptionFilter properties, and, on the other, we have two code-based
validation interfaces.

While the ValidationRule classes and their related validation approach work perfectly
well, they are specified in the XAML and, as such, are tied to the UI. Furthermore, when
using the ValidationRule classes, we are effectively separating the validation logic from
the data Models that they are validating and storing it in a completely different assembly.

When developing a WPF application using the MVVM methodology, we work with data,
rather than UI elements, and so we tend to shy away from using the ValidationRule
classes and their related validation strategy directly.

Additionally, the NotifyOnValidationError and UpdateSourceExceptionFilter
properties of the Binding class also require event or delegate handlers, respectively, and,
as we have discovered, we prefer to avoid doing this when using MVVM. Therefore, we
will not be looking at this UI-based validation approach in this book, instead focusing on
the two code-based validation interfaces.

Implementing Responsive Data Validation Chapter 9

[417]

Getting to grips with validation interfaces
In WPF, we have access to two main validation interfaces; the original one is the
IDataErrorInfo interface, and, in .NET 4.5, the INotifyDataErrorInfo interface was
added. In this section, we'll first investigate the original validation interface and its
shortcomings and see how we can make it more usable, before examining the latter.

Implementing the IDataErrorInfo interface
The IDataErrorInfo interface is a very simple affair, with only two required properties to
implement. The Error property returns the error message that describes the validation
error, and the Item[string] indexer returns the error message for the specified property.

It certainly seems straightforward enough, so let's take a look at a basic implementation of
this interface. Let's create another base class to implement this in and, for now, omit all
other unrelated base class members so that we can concentrate on this interface:

using System.ComponentModel;
using System.Runtime.CompilerServices;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.DataModels
{
 public abstract class BaseValidationModel : INotifyPropertyChanged,
 IDataErrorInfo
 {
 protected string error = string.Empty;

 #region IDataErrorInfo Members

 public string Error => error;

 public virtual string this[string propertyName] => error;

 #endregion

 #region INotifyPropertyChanged Members

 ...

 #endregion
 }
}

Implementing Responsive Data Validation Chapter 9

[418]

In this simplest of implementations, we have declared a protected error field, which will
be accessible to derived classes. Note that the Error property that returns it uses the C# 6.0
expression-bodied property syntax. This syntax is a shorthand notation for methods,
properties, indexers, constructors, and destructors, where the member body is replaced by
an inline expression.

We have declared the class indexer (the this property) as virtual, so that we can
override it in the derived classes. Another option would be to declare it as abstract, so
that derived classes were forced to override it. Whether you prefer to use virtual or
abstract will depend on your particular circumstances, such as whether you expect every
derived class to require validation.

Let's take a look at an example of a class that derives from our new base class:

using System;

namespace CompanyName.ApplicationName.DataModels
{
 public class Product : BaseValidationModel
 {
 private Guid id = Guid.Empty;
 private string name = string.Empty;
 private decimal price = 0;

 public Guid Id
 {
 get { return id; }
 set { if (id != value) { id = value; NotifyPropertyChanged(); } }
 }

 public string Name
 {
 get { return name; }
 set { if (name != value) { name = value; NotifyPropertyChanged(); } }
 }

 public decimal Price
 {
 get { return price; }
 set { if (price != value) { price = value;
 NotifyPropertyChanged(); } }
 }

 public override string this[string propertyName]
 {
 get

Implementing Responsive Data Validation Chapter 9

[419]

 {
 error = string.Empty;
 if (propertyName == nameof(Name))
 {
 if (string.IsNullOrEmpty(Name))
 error = "Please enter the product name.";
 else if (Name.Length > 25) error = "The product name cannot be
 longer than twenty-five characters.";
 }
 else if (propertyName == nameof(Price) && Price == 0)
 error = "Please enter a valid price for the product.";
 return error;
 }
 }
 }
}

Here, we have a basic Product class that extends our new base class. The only job that each
derived class that wants to participate in the validation process needs to do is to override
the class indexer and supply details regarding their relevant validation logic.

In the indexer, we first set the error field to an empty string. Note that this is an essential
part of this implementation, as without it, any triggered validation errors would never be
cleared. There are a number of ways to implement this method, with several different
abstractions being possible. However, all implementations require validation logic to be
run when this property is called.

In our particular example, we simply use an if statement to check for errors in each
property, although a switch statement works just as well here. The first condition checks
the value of the propertyName input parameter, while multiple validation rules per
property can be handled with inner if statements.

If the propertyName input parameter equals Name, then we first check to ensure that it has
some value and provide an error message in case of failure. If the property value is not
null or empty, then a second validation condition checks that the length is no longer than
25 characters, which simulates a particular database constraint that we may have.

If the propertyName input parameter equals Price, then we simply check that a valid,
positive value has been entered and provide another error message in case of failure. If we
had further properties in this class, then we would simply add further if conditions,
checking their property names, and further relevant validation checks.

Implementing Responsive Data Validation Chapter 9

[420]

Now that we have our validatable class, let's add a new View and View Model and the
DataTemplate in the App.xaml file that connects the two, to demonstrate what else we
need to do to get our validation logic connected to the data in the UI. Let's first see the
ProductViewModel class:

using CompanyName.ApplicationName.DataModels;

namespace CompanyName.ApplicationName.ViewModels
{
 public class ProductViewModel : BaseViewModel
 {
 private Product product = new Product();

 public Product Product
 {
 get { return product; }
 set { if (product != value) { product = value;
 NotifyPropertyChanged(); } }
 }
 }
}

The ProductViewModel class simply defines a single Product object and exposes it via the
Product property. Let's now add some basic styles to the application resources file, which
we'll use in the related View:

<Style x:Key="LabelStyle" TargetType="{x:Type TextBlock}">
 <Setter Property="HorizontalAlignment" Value="Right" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0,0,10,10" />
</Style>
<Style x:Key="FieldStyle" TargetType="{x:Type TextBox}">
 <Setter Property="SnapsToDevicePixels" Value="True" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0,0,0,10" />
 <Setter Property="Padding" Value="1.5,2" />
</Style>

And now, let's see the View:

<UserControl x:Class="CompanyName.ApplicationName.Views.ProductView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="320" FontSize="14">
 <Grid Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />

Implementing Responsive Data Validation Chapter 9

[421]

 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Text="Name" Style="{StaticResource LabelStyle}" />
 <TextBox Grid.Column="1" Text="{Binding Product.Name,
 UpdateSourceTrigger=PropertyChanged, ValidatesOnDataErrors=True}"
 Style="{StaticResource FieldStyle}" />
 <TextBlock Grid.Row="1" Text="Price"
 Style="{StaticResource LabelStyle}" />
 <TextBox Grid.Row="1" Grid.Column="1" Text="{Binding Product.Price,
 UpdateSourceTrigger=PropertyChanged, ValidatesOnDataErrors=True}"
 Style="{StaticResource FieldStyle}" />
 </Grid>
</UserControl>

In the XAML, we have a typical two column Grid panel, with two rows. The two
TextBlock labels have the LabelStyle style applied, and the two TextBox input controls
have the FieldStyle style applied. The binding applied to each TextBox.Text property
has two important properties set on it.

The first is the UpdateSourceTrigger property, and this controls when the data source is
updated and therefore, also when validation occurs. If you remember, a value of
PropertyChanged causes updates to occur as soon as the data bound property value
changes. An alternative value would be LostFocus, which causes updates to occur when
the UI control loses focus, for example, when tabbing to the next control.

The other important property here is the ValidatesOnDataErrors property, without
which our current example would not work. Setting this property to True on a binding
causes a built-in DataErrorValidationRule element to be implicitly added to the
Binding.ValidationRules collection.

As the data bound value changes, this element will check for errors raised by the
IDataErrorInfo interface. It does this by calling the indexer in our data Model, with the
name of the data bound property each time the data source is updated. Therefore, in this
basic example, developers would be responsible for setting this property to True on each
binding to make the validation work.

Implementing Responsive Data Validation Chapter 9

[422]

In .NET 4.5, Microsoft introduced a breaking change to the way that
numeric data is entered in the TextBox control when the
UpdateSourceTrigger binding is set to PropertyChanged. Their
change stops users from entering numerical separators. Refer to
the Keeping Synchronized with Legacy Behavior section later in this chapter to
find out why and how to work around this issue.

When using a value of PropertyChanged for the UpdateSourceTrigger property, along
with the fact that we validate each time the properties change, we have the benefit of
immediate updates of errors. However, this method of validation works in a pre-emptive
manner, with all validation errors being shown before the user has a chance to enter any
data. This can be somewhat off-putting to a user, so let's take a quick look at our example
when it first starts:

As you can see, it's clear that there are some problems, but it's unclear as to what they are.
So far, we have no output for our error messages. One common output that we could use
would be the tooltips of the various form controls.

We could add a trigger to our FieldStyle style, which listened to the
Validation.HasError Attached Property and set the TextBox control's tooltip to the
ErrorContent property of the error whenever one was present. This is how Microsoft has
traditionally demonstrated how to do this on their website:

<Style.Triggers>
 <Trigger Property="Validation.HasError" Value="True">
 <Setter Property="ToolTip" Value="{Binding (Validation.Errors)[0].
 ErrorContent, RelativeSource={RelativeSource Self}}" />
 </Trigger>
</Style.Triggers>

Note that we use brackets in the binding path for the Validation.Errors collection
because it is an Attached Property, and that we use the RelativeSource.Self instance
because we want to target the Errors collection of the TextBox control itself. Also note
that this example only displays the first ValidationError object in the Errors collection.

Implementing Responsive Data Validation Chapter 9

[423]

Using this style on our data bound TextBox controls helps to provide the user with further
information when they position their mouse cursor over the relevant control(s):

However, when there are no validation errors to display, an error will be seen in the
Output window of Visual Studio, because we are attempting to view the first error from
the Validation.Errors Attached Property collection, but none exist:

System.Windows.Data Error: 17 : Cannot get 'Item[]' value (type
'ValidationError') from '(Validation.Errors)' (type
'ReadOnlyObservableCollection`1'). BindingExpression:
Path=(Validation.Errors)[0].ErrorContent; DataItem='TextBox' (Name='');
target element is 'TextBox' (Name=''); target property is 'ToolTip' (type
'Object') ArgumentOutOfRangeException: 'System.ArgumentOutOfRangeException:
Specified argument was out of the range of valid values.
Parameter name: index'

There are a number of ways to avoid this error, such as simply displaying the whole
collection, and we'll see an example of this later in the chapter. However, the simplest way
is to make use of the CurrentItem property of the ICollectionView object that is
implicitly used to wrap IEnumerable data collections, which are data bound to
ItemsControl elements.

This is similar to the way that a ListBox will implicitly wrap our data bound data items in
ListBoxItem elements. The implementation of the ICollectionView interface that wraps
our data collection is primarily used to enable sorting, filtering, and grouping of the data,
without affecting the actual data, but its CurrentItem property is a bonus in this situation.

With this, we can replace the indexer that was causing us a problem when there were no
validation errors. Now, when there are no errors, the CurrentItem property will return
null, rather than throwing an Exception and so, despite Microsoft's own example showing
the use of the indexer, this is a far better solution:

<Setter Property="ToolTip" Value="{Binding (Validation.Errors).
 CurrentItem.ErrorContent, RelativeSource={RelativeSource Self}}" />

Implementing Responsive Data Validation Chapter 9

[424]

Nevertheless, if an end user is not aware of having to place their mouse cursor over the
control to see the tooltip, then the situation is still not improved. Therefore, this initial
implementation still has room for improvement. Another shortcoming of this interface is
that it was designed to be atomic, so it only deals with a single error per property at a time.

In our Product class example, we want to validate the fact that the Name property is not
only entered, but also has a valid length. In the order that we declared our two validation
conditions for this property, the first error will be raised when the field in the UI is empty,
and the second will be raised if the entered value is too long. As the entered value cannot
be both non-existent and too long at the same time, having only a single reported error at
one time is not a problem in this particular example.

However, if we had a property that had multiple validation conditions, such as a maximum
length and a particular format, then with the usual IDataErrorInfo interface
implementation, we'd only be able to view one of these errors at once. However, despite
this limitation, we can still improve this basic implementation. Let's see how we can do this
with a new base class:

using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.ComponentModel;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Text;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.DataModels
{
 public abstract class BaseValidationModelExtended :
 INotifyPropertyChanged, IDataErrorInfo
 {
 protected ObservableCollection<string> errors =
 new ObservableCollection<string>();
 protected ObservableCollection<string> externalErrors =
 new ObservableCollection<string>();

 protected BaseValidationModelExtended()
 {
 ExternalErrors.CollectionChanged += ExternalErrors_CollectionChanged;
 }

 public virtual ObservableCollection<string> Errors => errors;

 public ObservableCollection<string> ExternalErrors => externalErrors;

 public virtual bool HasError => errors != null && errors.Any();

Implementing Responsive Data Validation Chapter 9

[425]

 #region IDataErrorInfo Members

 public string Error
 {
 get
 {
 if (!HasError) return string.Empty;
 StringBuilder errors = new StringBuilder();
 Errors.ForEach(e => errors.AppendUniqueOnNewLineIfNotEmpty(e));
 return errors.ToString();
 }
 }

 public virtual string this[string propertyName] => string.Empty;

 #endregion

 #region INotifyPropertyChanged Members

 public virtual event PropertyChangedEventHandler PropertyChanged;

 protected virtual void NotifyPropertyChanged(
 params string[] propertyNames)
 {
 if (PropertyChanged != null)
 {
 foreach (string propertyName in propertyNames)
 {
 if (propertyName != nameof(HasError)) PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 PropertyChanged(this,
 new PropertyChangedEventArgs(nameof(HasError)));
 }
 }

 protected virtual void NotifyPropertyChanged(
 [CallerMemberName]string propertyName = "")
 {
 if (PropertyChanged != null)
 {
 if (propertyName != nameof(HasError)) PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 PropertyChanged(this,
 new PropertyChangedEventArgs(nameof(HasError)));
 }
 }

Implementing Responsive Data Validation Chapter 9

[426]

 #endregion

 private void ExternalErrors_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e) =>
 NotifyPropertyChanged(nameof(Errors));
 }
}

In this example, we add two collections to hold error messages; the Errors collection
property contains validation errors that are generated within the derived class, and the
ExternalErrors collection property holds externally generated validation errors,
typically from a parent View Model.

In the constructor, we attach the ExternalErrors_CollectionChanged event handler to
the CollectionChanged event of the ExternalErrors collection property so that it is
notified whenever items are added or removed from it.

After the declaration of the error collection properties, we see the HasError expression-
bodied property, which checks whether the Errors collection contains any errors. Note
that we check the errors field for null, rather than the Errors property, because calling
the Errors property regenerates the error messages and we do not want to regenerate
them all twice each time the HasError property is called.

Next, we see the new implementation of the IDataErrorInfo interface. The class indexer
remains the same as the one from the previous implementation, but we see a difference in
the definition of the Error property, which now compiles a complete list of all errors,
rather than returning a single error message at a time.

In it, we first check whether any errors exist, and return an empty string if not. If errors do
exist, we initialize a StringBuilder object and use our ForEach Extension Method to
iterate through the Errors collection and append each of them to it, if they haven't already
been included. We do this using another Extension Method before returning the output, so
let's see what that looks like now:

public static void AppendUniqueOnNewLineIfNotEmpty(
 this StringBuilder stringBuilder, string text)
{
 if (text.Trim().Length > 0 && !stringBuilder.ToString().Contains(text))
 stringBuilder.AppendFormat("{0}{1}", stringBuilder.ToString().Trim().
 Length == 0 ? string.Empty : Environment.NewLine, text);
}

Implementing Responsive Data Validation Chapter 9

[427]

In our AppendUniqueOnNewLineIfNotEmpty Extension Method, we first check that the
input value is not an empty string and that it is not already present in the StringBuilder
object. If the text input parameter is valid, we use the ternary operator to determine
whether it is the first value to be added and whether we need to precede it with a new line
or not, before adding the new, unique value.

Returning to our validation base class now, we see the new implementation of the
INotifyPropertyChanged interface. Note that we repeat our
earlier BaseSynchronizableDataModel class example by raising the PropertyChanged
event each time changes are registered for any other properties, but, unlike the previous
example, we raise the HasError property here, rather than the HasChanges property.

We can combine both of these and raise the PropertyChanged event for both properties
each time we receive notification of changes to other properties if we so desire. In this case,
the purpose is to call the HasError property, which will be used in the UI to display or
hide the control that displays the error messages, and so it will be updated after every
validatable property change.

At the bottom of our class, we see the expression-bodied
ExternalErrors_CollectionChanged method, which calls the
NotifyPropertyChanged method for the Errors collection property. This notifies
controls that are data bound to this property that its value has changed and that they
should retrieve that new value.

Let's see an example implementation of this now, using an extended version of our
Product class:

public class ProductExtended : BaseValidationModelExtended
{
 ...

 public override ObservableCollection<string> Errors
 {
 get
 {
 errors = new ObservableCollection<string>();
 errors.AddUniqueIfNotEmpty(this[nameof(Name)]);
 errors.AddUniqueIfNotEmpty(this[nameof(Price)]);
 errors.AddRange(ExternalErrors);
 return errors;
 }
 }

 ...
}

Implementing Responsive Data Validation Chapter 9

[428]

Therefore, when an error is externally added to the ExternalErrors collection, the
ExternalErrors_CollectionChanged method will be called and this notifies changes to
the Errors property. This results in the property being called and the external error(s)
being added to the internal errors collection, along with any internal errors.

To get this particular implementation of the IDataErrorInfo interface to work, each data
Model class will need to override this Errors property to add error messages from each
validated property. We provide a few Extension Methods to make this task easier. As its
name implies, the AddUniqueIfNotEmpty method adds strings to the collection if they do
not already exist in it:

public static void AddUniqueIfNotEmpty(
 this ObservableCollection<string> collection, string text)
{
 if (!string.IsNullOrEmpty(text) && !collection.Contains(text))
 collection.Add(text);
}

The AddRange method is another useful Extension Method that simply iterates through the
range collection input parameter and adds them to the collection parameter one by one:

public static void AddRange<T>(this ICollection<T> collection,
 ICollection<T> range)
{
 foreach (T item in range) collection.Add(item);
}

In addition to implementing this new Errors collection property in their derived classes,
developers will also need to ensure that they notify changes to it each time a validatable
property value is changed. We can do this using our overload of the
NotifyPropertyChanged method that takes multiple values:

public string Name
{
 get { return name; }
 set { if (name != value) { name = value;
 NotifyPropertyChanged(nameof(Name), nameof(Errors)); } }
}

public decimal Price
{
 get { return price; }
 set { if (price != value) { price = value;
 NotifyPropertyChanged(nameof(Price), nameof(Errors)); } }
}

Implementing Responsive Data Validation Chapter 9

[429]

The Errors property is responsible for calling the class indexer with the name of each of
the properties that we want to validate. Any error messages that are returned, including
those from the ExternalErrors collection property, are then added to the internal errors
collection.

In effect, we have replicated what the Validation class and the
DataErrorValidationRule element does in the UI, but in our data Model instead. This
means that we no longer have to set the ValidatesOnDataErrors property to True on
each binding. This is a better solution when using MVVM, as we prefer to work with data,
rather than UI elements, and now also have full access to all of the data validation errors in
our View Models.

Furthermore, we now have the ability to manually feed in error messages from our View
Models to our data Models via the ExternalErrors collection property. This can be very
useful when we need to validate across a collection of data Model objects.

For example, if we need to ensure that the name of each data Model object is unique within
a collection of related objects, we can use this feature. Let's now create a
new ProductViewModelExtended class to see how we can accomplish this:

using System;
using System.ComponentModel;
using System.Linq;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.DataModels.Collections;

namespace CompanyName.ApplicationName.ViewModels
{
 public class ProductViewModelExtended : BaseViewModel
 {
 private ProductsExtended products = new ProductsExtended();

 public ProductViewModelExtended()
 {
 Products.Add(new ProductExtended() { Id = Guid.NewGuid(),
 Name = "Virtual Reality Headset", Price = 14.99m });
 Products.Add(new ProductExtended() { Id = Guid.NewGuid(),
 Name = "Virtual Reality Headset" });
 Products.CurrentItemChanged += Products_CurrentItemChanged;
 Products.CurrentItem = Products.Last();
 ValidateUniqueName(Products.CurrentItem);
 }

 public ProductsExtended Products
 {
 get { return products; }

Implementing Responsive Data Validation Chapter 9

[430]

 set { if (products != value) { products = value;
 NotifyPropertyChanged(); } }
 }

 private void Products_CurrentItemChanged(
 ProductExtended oldProduct, ProductExtended newProduct)
 {
 if (newProduct != null)
 newProduct.PropertyChanged += Product_PropertyChanged;
 if (oldProduct != null)
 oldProduct.PropertyChanged -= Product_PropertyChanged;
 }

 private void Product_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
 {
 if (e.PropertyName == nameof(Products.CurrentItem.Name))
 ValidateUniqueName(Products.CurrentItem);
 }

 private void ValidateUniqueName(ProductExtended product)
 {
 string errorMessage = "The product name must be unique.";
 if (!IsProductNameUnique(product))
 product.ExternalErrors.Add(errorMessage);
 else product.ExternalErrors.Remove(errorMessage);
 }

 private bool IsProductNameUnique(ProductExtended product) =>
 !Products.Any(p => p.Id != product.Id &&
 !string.IsNullOrEmpty(p.Name) && p.Name == product.Name);
 }
}

Like the ProductViewModel class, our ProductViewModelExtended class also extends
the BaseViewModel class, but it declares a ProductsExtended collection and adds two
ProductExtended objects to it in the constructor, instead of the single Product instance
used previously. The ProductsExtended class simply extends our BaseCollection class:

namespace CompanyName.ApplicationName.DataModels.Collections
{
 public class ProductsExtended : BaseCollection<ProductExtended> { }
}

Implementing Responsive Data Validation Chapter 9

[431]

In the class constructor, we first add a couple of test products to the
ProductsExtended collection and then attach the Products_CurrentItemChanged
method to its CurrentItemChanged delegate. In order to set the second item as the current
item, we call the Last method on the ProductsExtended collection and set that to its
CurrentItem property.

This ensures that the Products_CurrentItemChanged method is called when setting the
second item as the current item and the Product_PropertyChanged handler is attached to
it. After this, we then call the ValidateUniqueName method that is described shortly,
passing in the current item.

After the declaration of the Products property, we see the
Products_CurrentItemChanged method, which will be called each time the value of the
CurrentItem property is changed. In it, we attach the Product_PropertyChanged
method to the PropertyChanged event of the new, current ProductExtended object and
detach it from the previous one.

The Product_PropertyChanged method will be called each time any property of the
related ProductExtended object changes. If the property that changed was the Name
property, we call the ValidateUniqueName method, as that is the property that we need to
validate for uniqueness.

The ValidateUniqueName method is responsible for adding or removing the error from
the ExternalErrors collection property of the product input parameter. It does this by
checking the result of the IsProductNameUnique method, which does the actual check for
uniqueness.

In the expression-bodied IsProductNameUnique method, we use LINQ to query the
Products collection and find out whether an existing item shares the same name. It does
this by checking that each item does not have the same identification number, or, in other
words, is not the object being edited, but does have the same name, and that the name is
not an empty string.

If any other products that have the same name are found, then the method returns false
and an error is added to the product's ExternalErrors collection in the
ValidateUniqueName method. Note that we must manually remove this error if the name
is found to be unique.

Implementing Responsive Data Validation Chapter 9

[432]

Let's now create a new ProductViewExtended class, to display these errors better. First,
let's add another reusable resource to the application resources file:

<DataTemplate x:Key="WrapTemplate">
 <TextBlock Text="{Binding}" TextWrapping="Wrap" />
</DataTemplate>

This DataTemplate simply displays a TextBlock control, with its Text property data
bound to the data context of the DataTemplate, and its TextWrapping property set to
Wrap, which has the effect of wrapping text that does not fit into the width provided. Now,
let's look at the new ProductViewExtended class that uses this template:

<UserControl
x:Class="CompanyName.ApplicationName.Views.ProductViewExtended"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="600" FontSize="14">
 <Grid Margin="20">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ListBox ItemsSource="{Binding Products}" SelectedItem="{Binding
 Products.CurrentItem}" DisplayMemberPath="Name" Margin="0,0,20,0" />
 <Grid Grid.Column="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Border Grid.ColumnSpan="2" BorderBrush="Red" BorderThickness="2"
 Background="#1FFF0000" CornerRadius="5" Visibility="{Binding
 Products.CurrentItem.HasError, Converter={StaticResource
 BoolToVisibilityConverter}}" Margin="0,0,0,10" Padding="10">
 <ItemsControl ItemsSource="{Binding Products.CurrentItem.Errors}"
 ItemTemplate="{StaticResource WrapTemplate}" />
 </Border>
 <TextBlock Grid.Row="1" Text="Name"
 Style="{StaticResource LabelStyle}" />
 <TextBox Grid.Row="1" Grid.Column="1" Text="{Binding
 Products.CurrentItem.Name, UpdateSourceTrigger=PropertyChanged}"
 Style="{StaticResource FieldStyle}" />
 <TextBlock Grid.Row="2" Text="Price"

Implementing Responsive Data Validation Chapter 9

[433]

 Style="{StaticResource LabelStyle}" />
 <TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Products.CurrentItem.Price, Delay=250,
 UpdateSourceTrigger=PropertyChanged}"
 Style="{StaticResource FieldStyle}" />
 </Grid>
 </Grid>
</UserControl>

In this example, we now have a Grid panel with two columns. In the left column, we have
a ListBox control, and, in the right column, we have another Grid panel containing our
form fields. The ItemsSource property of the ListBox control is data bound to the
Products collection property from our View Model, and the SelectedItem property is
data bound to its CurrentItem property.

We set the DisplayMemberPath property to Name, to output the name of each product, as
a shortcut for creating a DataTemplate for our Product class. Alternatively, we could
have returned the value of the Name property from the ToString method in our Product
class to achieve the same visual result, although that would not update in the UI when the
property value changed.

In the Grid panel on the right, we declare three rows and, in the top one, we define a
Border element containing an ItemsControl object. Its ItemsSource property is data
bound to the Errors collection property of the item that is set to the CurrentItem
property of the Products collection, and its ItemTemplate property is set to our new
WrapTemplate data template. The Visibility property of the border is data bound to the
item's HasError property using the BoolToVisibilityConverter instance from the
application resources.

Therefore, when a change is made to a validated property of the item and an error is raised
in our validation base class, the PropertyChanged event is raised for the HasError
property and this alerts this binding to check the latest value and update its visibility value
via the applied BoolToVisibilityConverter instance accordingly.

Note that we use ItemsControl here, because with this collection, we have no need for the
extra features that the ListBox control provides us with, such as a border, or the notion of
a selected item. The two rows underneath the error output contain the form fields from the
ProductView example.

When this example is run, we'll see two items that have the same name in our ListBox
control. As such, there will already be a validation error displayed that highlights this fact
and that was added through the ExternalErrors collection in the View Model.

Implementing Responsive Data Validation Chapter 9

[434]

In addition to this, we'll see another error, highlighting the fact that a valid price needs to
be entered:

As the UpdateSourceTrigger property of the field bindings have been set to
PropertyChanged and the data bound properties are validated straight away, the errors
will immediately disappear and/or reappear as soon as we type in the relevant form fields.
This setting, along with the fact that we validate each time the properties change, makes
our validation work in a pre-emptive manner.

We can also change this to work only when a user presses a submit button by setting the
UpdateSourceTrigger property to the Explicit value. However, this requires that we
access the data bound controls in the code behind files and so we tend to avoid this
approach when using the MVVM methodology:

BindingExpression bindingExpression =
 NameOfTextBox.GetBindingExpression(TextBox.TextProperty);
bindingExpression.UpdateSource();

Alternatively, if we wanted to validate in this way when using MVVM, we could simply
call the validation code when the command that is data bound to the submit or save button
is executed instead. Let's now take a look at the INotifyDataErrorInfo interface to see
how it differs from the IDataErrorInfo interface.

Introducing the INotifyDataErrorInfo interface
The INotifyDataErrorInfo interface was added to the .NET Framework in .NET 4.5 to
address concerns over the previous IDataErrorInfo interface. Like the IDataErrorInfo
interface, the INotifyDataErrorInfo interface is also a simple affair, with only three
members for us to implement.

Implementing Responsive Data Validation Chapter 9

[435]

With this interface, we now have a HasErrors property, which indicates whether the
relevant data Model instance has any errors, a GetErrors method that retrieves the object's
error collection, and an ErrorsChanged event to raise when the entity's errors change. We
can see straight away that this interface was designed to work with multiple errors, unlike
the IDataErrorInfo interface. Now, let's take a look at an implementation of this:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Linq;
using System.Runtime.CompilerServices;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.DataModels
{
 public abstract class BaseNotifyValidationModel : INotifyPropertyChanged,
 INotifyDataErrorInfo
 {
 protected Dictionary<string, List<string>> AllPropertyErrors { get; } =
 new Dictionary<string, List<string>>();

 public ObservableCollection<string> Errors =>
 new ObservableCollection<string>(
 AllPropertyErrors.Values.SelectMany(e => e).Distinct());

 public abstract IEnumerable<string> this[string propertyName] { get; }

 public void NotifyPropertyChangedAndValidate(
 params string[] propertyNames)
 {
 foreach (string propertyName in propertyNames)
 NotifyPropertyChangedAndValidate(propertyName);
 }

 public void NotifyPropertyChangedAndValidate(
 [CallerMemberName]string propertyName = "")
 {
 NotifyPropertyChanged(propertyName);
 Validate(propertyName);
 }

 public void Validate(string propertyName)
 {
 UpdateErrors(propertyName, this[propertyName]);
 }

Implementing Responsive Data Validation Chapter 9

[436]

 private void UpdateErrors(string propertyName,
 IEnumerable<string> errors)
 {
 if (errors.Any())
 {
 if (AllPropertyErrors.ContainsKey(propertyName))
 AllPropertyErrors[propertyName].Clear();
 else AllPropertyErrors.Add(propertyName, new List<string>());
 AllPropertyErrors[propertyName].AddRange(errors);
 OnErrorsChanged(propertyName);
 }
 else
 {
 if (AllPropertyErrors.ContainsKey(propertyName))
 AllPropertyErrors.Remove(propertyName);
 OnErrorsChanged(propertyName);
 }
 }

 #region INotifyDataErrorInfo Members

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 protected void OnErrorsChanged(string propertyName)
 {
 ErrorsChanged?.Invoke(this,
 new DataErrorsChangedEventArgs(propertyName));
 NotifyPropertyChanged(nameof(Errors), nameof(HasErrors));
 }

 public IEnumerable GetErrors(string propertyName)
 {
 List<string> propertyErrors = new List<string>();
 if (string.IsNullOrEmpty(propertyName)) return propertyErrors;
 AllPropertyErrors.TryGetValue(propertyName, out propertyErrors);
 return propertyErrors;
 }

 public bool HasErrors =>
 AllPropertyErrors.Any(p => p.Value != null && p.Value.Any());

 #endregion

 #region INotifyPropertyChanged Members

 public virtual event PropertyChangedEventHandler PropertyChanged;

 protected virtual void NotifyPropertyChanged(

Implementing Responsive Data Validation Chapter 9

[437]

 params string[] propertyNames)
 {
 if (PropertyChanged != null) propertyNames.ForEach(
 p => PropertyChanged(this, new PropertyChangedEventArgs(p)));
 }

 protected virtual void NotifyPropertyChanged(
 [CallerMemberName]string propertyName = "")
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

 #endregion
 }
}

In our first implementation, we see the declaration of the read-only AllPropertyErrors
auto property, initialized to a new instance. For this collection, we use the
Dictionary<string, List<string>> type, where the name of each property in error is
used as the dictionary key, and multiple errors for that property can be stored in the related
string list.

We then see the read-only, expression-bodied Errors property, which will hold the
string collection of errors to be displayed in the UI. It is set to return a compilation of
unique errors from the AllPropertyErrors collection. Next, we find an abstract string
indexer that returns an IEnumerable of the string type, which is responsible for
returning multiple validation errors from derived classes that relate to the property
specified by the propertyName input parameter. We'll see how we can implement this
property in a derived class shortly.

After that, we add two convenient NotifyPropertyChangedAndValidate methods,
which we can use to both provide notification of changes to our property and to validate it
in a single operation. In these methods, we call our implementation of the
NotifyPropertyChanged method and then our Validate method, passing the relevant
property name to each of them.

In the Validate method, we call the UpdateErrors method, passing in the
propertyName input parameter and the related errors for the specified property, returned
from the this indexer property. In the UpdateErrors method, we begin by checking
whether there are any errors in the collection specified by the errors input parameter.

Implementing Responsive Data Validation Chapter 9

[438]

If there are, and it does contain some, we clear the errors for the relevant property from the
AllPropertyErrors collection, or initialize a new entry for the property, with an empty
collection otherwise. We then add the incoming errors to
the AllPropertyErrors collection for the relevant property and call
the OnErrorsChanged method to raise the ErrorsChanged event.

If there are no errors in the collection specified by the errors input parameter, we remove
all previous entries from the AllPropertyErrors collection for the relevant property,
after first validating that some exist, so as to avoid an Exception being thrown. We then call
the OnErrorsChanged method to raise the ErrorsChanged event to notify changes to the
collection.

Next, we see the required INotifyDataErrorInfo interface members. We declare the
ErrorsChanged event for internal use only and the related OnErrorsChanged method
that raises it using the null conditional operator, although this method is not technically
part of the interface and we are free to raise the event as we see fit. After raising the event,
we notify the system of changes to the Errors and HasErrors properties, to refresh the
error collection, and to update the UI of any changes.

In the GetErrors method, we are required to return the errors for the propertyName
input parameter. We start by initializing the propertyErrors collection, which we return
immediately if the propertyName input parameter is null, or empty. Otherwise, we use
the TryGetValue method to populate the propertyErrors collection with the errors that
relate to the propertyName input parameter from the AllPropertyErrors collection. We
then return the propertyErrors collection.

The simplified HasErrors expression-bodied property follows and simply returns true if
the AllPropertyErrors collection property contains any errors, or false otherwise. We
complete the class with our default implementation of the INotifyPropertyChanged
interface. Note that we can simply omit this if we intend this base class to extend another
with its own implementation of this interface.

Let's copy our earlier Product class so as to create a new ProductNotify class that
extends our new base class. Apart from the class name and the collection of errors, we need
to make a number of changes. Let's look at these now:

using System;
using System.Collections.Generic;

namespace CompanyName.ApplicationName.DataModels
{
 public class ProductNotify : BaseNotifyValidationModel
 {

Implementing Responsive Data Validation Chapter 9

[439]

 ...

 public string Name
 {
 get { return name; }
 set { if (name != value) { name = value;
 NotifyPropertyChangedAndValidate(); } }
 }

 public decimal Price
 {
 get { return price; }
 set { if (price != value) { price = value;
 NotifyPropertyChangedAndValidate(); } }
 }

 public override IEnumerable<string> this[string propertyName]
 {
 get
 {
 List<string> errors = new List<string>();
 if (propertyName == nameof(Name))
 {
 if (string.IsNullOrEmpty(Name))
 errors.Add("Please enter the product name.");
 else if (Name.Length > 25) errors.Add("The product name cannot
 be longer than twenty-five characters.");
 if (Name.Length > 0 && char.IsLower(Name[0])) errors.Add("The
 first letter of the product name must be a capital letter.");
 }
 else if (propertyName == nameof(Price) && Price == 0)
 errors.Add("Please enter a valid price for the product.");
 return errors;
 }
 }
 }
}

The main differences between the ProductNotify and Product classes relate to the base
class, the notification method used, and the handling of multiple concurrent errors. We
start by extending our new BaseNotifyValidationModel base class. Each property, with
the Exception of the Id property, which requires no validation, now calls
the NotifyPropertyChangedAndValidate method from the new base class, instead of
the NotifyPropertyChanged method from the BaseValidationModel class.

Implementing Responsive Data Validation Chapter 9

[440]

In addition to that, the this indexer property can now report multiple errors
simultaneously, rather than the single error that the BaseValidationModel class could
work with. As such, it now declares a string list to hold the errors, with each valid error
being added to it in turn. The final difference is that we have also added a new error, which
validates the fact that the first letter of the product name should start with a capital letter.

Let's now see our ProductNotifyViewModel class:

using System;
using System.Linq;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.DataModels.Collections;

namespace CompanyName.ApplicationName.ViewModels
{
 public class ProductNotifyViewModel : BaseViewModel
 {
 private ProductsNotify products = new ProductsNotify();

 public ProductNotifyViewModel()
 {
 Products.Add(new ProductNotify() { Id = Guid.NewGuid(),
 Name = "Virtual Reality Headset", Price = 14.99m });
 Products.Add(new ProductNotify() { Id = Guid.NewGuid(),
 Name = "Virtual Reality Headset" });
 Products.CurrentItem = Products.Last();
 Products.CurrentItem.Validate(nameof(Products.CurrentItem.Name));
 Products.CurrentItem.Validate(nameof(Products.CurrentItem.Price));
 }

 public ProductsNotify Products
 {
 get { return products; }
 set { if (products != value) { products = value;
 NotifyPropertyChanged(); } }
 }
 }
}

We start our ProductNotifyViewModel View Model by extending our usual
BaseViewModel base class. We declare a ProductsNotify collection and, in the
constructor, we populate it with two ProductNotify objects, with the same property
values that were used in the ProductViewModelExtended class example. We again call
the Last method on the ProductsNotify collection and set that last element to its
CurrentItem property to pre-select the second item in the UI.

Implementing Responsive Data Validation Chapter 9

[441]

We then call the Validate method twice on the object set to the CurrentItem property,
passing in the Name and Price properties, using the nameof operator for correctness. The
class ends with the standard declaration of the Products property. Note that the
ProductsNotify class simply extends our BaseCollection class, just like our Products
class did:

namespace CompanyName.ApplicationName.DataModels.Collections
{
 public class ProductsNotify : BaseCollection<ProductNotify> { }
}

Also note that if we removed the call to the Validate method from the constructor, this
implementation would no longer work in a pre-emptive manner. It would instead initially
hide any pre-existing validation errors, such as empty required values, until the user makes
changes and there is a problem. Therefore, empty required values would never cause an
error to be raised, unless a value was entered and then deleted, to once again be empty.

To address this, we could instead declare a ValidateAllProperties method that our
View Models can call to force a new validation pass, either pre-emptively, before the user
has a chance to enter any data, or on the click of a save button, once all fields have been
filled. We'll see an example of this later in this chapter, but for now, let's see the XAML of
our ProductNotifyView class:

<UserControl x:Class="CompanyName.ApplicationName.Views.ProductNotifyView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="600" FontSize="14">
 <Grid Margin="20">
 <Grid.Resources>
 <DataTemplate x:Key="ProductTemplate">
 <TextBlock Text="{Binding Name,
 ValidatesOnNotifyDataErrors=False}" />
 </DataTemplate>
 </Grid.Resources>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ListBox ItemsSource="{Binding Products}"
 SelectedItem="{Binding Products.CurrentItem}"
 ItemTemplate="{StaticResource ProductTemplate}" Margin="0,0,20,0" />
 <Grid Grid.Column="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />

Implementing Responsive Data Validation Chapter 9

[442]

 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Border Grid.ColumnSpan="2" BorderBrush="Red"
 BorderThickness="2" Background="#1FFF0000" CornerRadius="5"
 Visibility="{Binding Products.CurrentItem.HasErrors,
 Converter={StaticResource BoolToVisibilityConverter}}"
 Margin="0,0,0,10" Padding="10">
 <ItemsControl ItemsSource="{Binding Products.CurrentItem.Errors}"
 ItemTemplate="{StaticResource WrapTemplate}" />
 </Border>
 <TextBlock Grid.Row="1" Text="Name"
 Style="{StaticResource LabelStyle}" />
 <TextBox Grid.Row="1" Grid.Column="1"
 Text="{Binding Products.CurrentItem.Name,
 UpdateSourceTrigger=PropertyChanged,
 ValidatesOnNotifyDataErrors=True}"
 Style="{StaticResource FieldStyle}" />
 <TextBlock Grid.Row="2" Text="Price"
 Style="{StaticResource LabelStyle}" />
 <TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Products.CurrentItem.Price,
 UpdateSourceTrigger=PropertyChanged,
 ValidatesOnNotifyDataErrors=True, Delay=250}"
 Style="{StaticResource FieldStyle}" />
 </Grid>
 </Grid>
</UserControl>

In the Resources section, we have declared a new DataTemplate element, named
ProductTemplate. This just displays the value of the Name property, but importantly, with
the binding’s ValidatesOnNotifyDataErrors property set to False, so that no error
template is displayed within the ListBoxItem elements.

Another point to note is that the Visibility property of the global error display's border
has now been updated to work with the new HasErrors property from the
INotifyDataErrorInfo interface, rather than the HasError property from our previous
BaseValidationModelExtended class.

The only other change was made to the Text property binding of the two TextBox
controls; when using the INotifyDataErrorInfo interface, instead of setting the
ValidatesOnDataErrors property to True as before, we now need to set the
ValidatesOnNotifyDataErrors property to True.

Implementing Responsive Data Validation Chapter 9

[443]

We'll update this example again shortly, but before that, let's explore another method of
providing validation logic.

Annotating data
The .NET Framework also provides us with an alternative, attribute-based validation
system in the System.ComponentModel.DataAnnotations namespace. It is mostly
comprised of a wide range of attribute classes that we can decorate our data Model
properties with so as to specify our validation rules. In addition to these attributes, it also
includes a few validation classes, which we will investigate later.

As an example, let's look at replicating the current validation rules from our
ProductNotify class with these data annotation attributes. We need to corroborate the
fact that the Name property is entered and has a length of 25 characters or less, and that the
Price property is more than zero. For the Name property, we can use the
RequiredAttribute and the MaxLengthAttribute attributes:

using System.ComponentModel.DataAnnotations;

...

[Required(ErrorMessage = "Please enter the product name.")]
[MaxLength(25, ErrorMessage = "The product name cannot be longer than
 twenty-five characters.")]
public string Name
{
 get { return name; }
 set { if (name != value) { name = value;
 NotifyPropertyChangedAndValidate(); } }
}

As with all attributes, we can omit the word Attribute when using them to decorate
properties. Most of these data annotation attributes declare one or more constructors with a
number of optional parameters. The ErrorMessage input parameter is used in each to set
the message to output when the specified condition is not met.

The RequiredAttribute constructor has no input parameters and simply checks that the
data bound value is not null or empty. The constructor of the MaxLengthAttribute class
takes an integer that specifies the maximum allowable length of the data bound value and it
will raise a ValidationError instance if the input value is longer.

Implementing Responsive Data Validation Chapter 9

[444]

For the Price property, we can make use of the RangeAttribute with a really high
maximum value, as there is no MinimumAttribute class available:

[Range(0.01, (double)decimal.MaxValue,
 ErrorMessage = "Please enter a valid price for the product.")]
public decimal Price
{
 get { return price; }
 set { if (price != value) { price = value;
 NotifyPropertyChangedAndValidate(); } }
}

The constructor of the RangeAttribute class takes two double values, which specify the
minimum and maximum valid values, and, in this example, we set the minimum to one
penny and the maximum to the maximum decimal value, as our Price property is of the
decimal type. Note that we could not use the RequiredAttribute class here, as numeric
data bound values will never be null or empty.

There are a large number of these data annotation attribute classes, covering the most
common validation situations, but when we have a requirement that does not have a pre-
existing attribute to help us, we can create our own custom attribute by extending the
ValidationAttribute class. Let's create an attribute that only validates a minimum
value:

using System.ComponentModel.DataAnnotations;

namespace CompanyName.ApplicationName.DataModels.Attributes
{
 public class MinimumAttribute : ValidationAttribute
 {
 private double minimumValue = 0.0;

 public MinimumAttribute(double minimumValue)
 {
 this.minimumValue = minimumValue;
 }

 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 if (value.GetType() != typeof(decimal) ||
 (decimal)value < (decimal)minimumValue)
 {
 string[] memberNames =
 new string[] { validationContext.MemberName };
 return new ValidationResult(ErrorMessage, memberNames);

Implementing Responsive Data Validation Chapter 9

[445]

 }
 return ValidationResult.Success;
 }
 }
}

When we extend the ValidationAttribute class, we only need to override the IsValid
method to return true or false, depending on our input value, which is specified by the
value input parameter. In our simple example, we first declare the minimumValue field to
store the target minimum allowable value to use during validation.

We populate this field in the class constructor, with the value that users of our class
provide. Next, we override the IsValid method that returns a ValidationResult
instance. In this method, we first check the type of the value input parameter and then cast
it to decimal, in order to compare it with the value of our minimumValue field.

Note that we have hardcoded this double type as the type of our minimum value, because
although our Price property is decimal, the decimal type is not considered primitive
and therefore cannot be used in an attribute. A better, more reusable solution, would be to
declare a number of constructors that accept different numerical types that could be used in
a wider range of situations and to update our IsValid method to be able to compare the
different types with the input value.

In our example, if the input value is either the incorrect type, or the cast value is less than
the value of the minimumValue field, we first create the memberNames variable and insert
the value of the MemberName property from the validationContext input parameter. We
then return a new instance of the ValidationResult class, inputting the used error
message and our memberNames collection.

If the input value is valid according to our particular validation logic, then we simply
return the ValidationResult.Success field to signify successful validation. Let's now
look at our new attribute being used on the Price property of our ProductNotify class:

[Minimum(0.01,
 ErrorMessage = "Please enter a valid price for the product.")]
public decimal Price
{
 get { return price; }
 set { if (price != value) { price = value;
 NotifyPropertyChangedAndValidate(); } }
}

Implementing Responsive Data Validation Chapter 9

[446]

In effect, our new attribute will work exactly as the previously used RangeAttribute
instance, but it clearly demonstrates how we can create our own custom validation
attributes. Before we move on to see how we can read these errors with our code, let's first
see how we can access the value of a second property from the data Model in our attribute,
as this is a common requirement when validating:

PropertyInfo propertyInfo =
 validationContext.ObjectType.GetProperty(otherPropertyName);
if (propertyInfo == null) throw new ArgumentNullException(
 $"Unknown property: {otherPropertyName}");
object otherPropertyValue =
 propertyInfo.GetValue(validationContext.ObjectInstance);

This example assumes that we have added a reference to the System and
System.Reflection namespaces and declared a string field named
otherPropertyName, which is populated with the name of the other property name in the
constructor. Using reflection, we attempt to access the PropertyInfo object that relates to
the specified property name.

If the PropertyInfo object is null, we throw an ArgumentNullException object,
alerting the developer that they have used a non-existent property name. Otherwise, we
use the GetValue method of the PropertyInfo object to retrieve the value from the other
property.

Now that we've seen how to use and create our own custom validation attributes, let's see
how we can use them to validate our data Model instances from one of their base classes:

ValidationContext validationContext = new ValidationContext(this);
List<ValidationResult> validationResults = new List<ValidationResult>();
Validator.TryValidateObject(this, validationContext, validationResults,
 true);

We start by initializing a ValidationContext object, passing in the data Model instance
from the base class. The context object is then passed to the TryValidateObject method
of the Validator class, in order to retrieve any validation errors from any of the data
annotation attributes.

We also initialize and pass a list of the ValidationResult type to the
TryValidateObject method, which will get filled with errors for the current data object.
Note that the fourth bool input parameter of this method specifies whether it will return
errors for all properties, or just for those that have been decorated with
RequiredAttribute from the data annotations namespace.

Implementing Responsive Data Validation Chapter 9

[447]

Later, we'll see how we can incorporate this into our application framework's
validation base class, but now let's investigate how we can perform different levels of
validation in different scenarios.

Varying levels of validation
One thing that is not addressed by either of the .NET validation interfaces is the ability to
either turn validation on or off, or to set varying levels of validation. This can be useful in
several different scenarios, such as having different Views to edit different properties of a
data Model object.

An example of this might be having a View that enables users to update the security
settings of a User object, where we want to validate that each property has a value, but
only for the properties that are currently displayed in the View. After all, there is no point
in informing the user that a certain field must be entered if they can't do that in their
current View.

The solution is to define a number of levels of validation, in addition to the levels that
represent full and no validation. Let's take a look at a simple ValidationLevel
enumeration that could fulfill this requirement:

namespace CompanyName.ApplicationName.DataModels.Enums
{
 public enum ValidationLevel
 {
 None, Partial, Full
 }
}

As we can see, in this simple example, we just have the three levels of validation, although
we could have added many more. However, in practice, we could still manage with this
simple enumeration. Let's see how we could use it to implement multi-level validation in
our validation base class:

private ValidationLevel validationLevel = ValidationLevel.Full;

public ValidationLevel ValidationLevel
{
 get { return validationLevel; }
 set { if (validationLevel != value) { validationLevel = value; } }
}

private void Validate(string propertyName, IEnumerable<string> errors)
{

Implementing Responsive Data Validation Chapter 9

[448]

 if (ValidationLevel == ValidationLevel.None) return;
 UpdateErrors(propertyName, this[propertyName]);
}

We add a ValidationLevel property, with its validationLevel backing field that
defaults to the Full enumeration member, as that is the normal action. Then, in the
Validate method, we add a new line that simply exits the method if the
ValidationLevel property is set to the None enumeration member.

Finally, the developers that use our application framework need to use the
ValidationLevel property when validating their properties in the data Model classes.
Imagine a scenario where users could edit the names of our products directly in a collection
control, or edit all of the product's properties in a separate View. Let's see what
our ProductNotify class indexer property would need to look like to demonstrate this:

public override IEnumerable<string> this[string propertyName]
{
 get
 {
 List<string> errors = new List<string>();
 if (propertyName == nameof(Name))
 {
 if (string.IsNullOrEmpty(Name))
 errors.Add("Please enter the product name.");
 else if (Name.Length > 25) errors.Add("The product name cannot be
 longer than twenty-five characters.");
 if (Name.Length > 0 && char.IsLower(Name[0])) errors.Add("The first
 letter of the product name must be a capital letter.");
 }
 else if (propertyName == nameof(Price) &&
 ValidationLevel == ValidationLevel.Full && Price == 0)
 errors.Add("Please enter a valid price for the product.");
 return errors;
 }
}

Using our implementation of the INotifyDataErrorInfo interface, we first initialize a
string list named errors and then we check the value of the propertyName input
parameter. As this implementation enables us to return multiple validation errors per
property, we need to take care with our if and else statements.

For example, when the propertyName input parameter equals Name, we have two if
statements and one else statement. The first if statement verifies that the Name property
has a value, while the else statement checks that its value is no longer than 25 characters.

Implementing Responsive Data Validation Chapter 9

[449]

As these two conditions cannot possibly both be true at the same time, we tie them together
with the if...else statement. On the other hand, the product name could be longer than
25 characters and start with a lowercase letter and so, the next condition has its own if
statement. In this example, the Name property will be validated when the
ValidationLevel property is set to either the Partial or Full members.

However, the remaining condition for the Price property is only to be validated when the
ValidationLevel property is set to the Full member and so, that is simply added as a
further condition. To trigger partial validation on a data Model variable, we can simply set
its ValidationLevel property as follows:

product.ValidationLevel = ValidationLevel.Partial;

Let's now investigate how we can combine the different techniques that we have viewed so
far.

Incorporating multiple validation techniques
Now that we've had a good look at the two validation interfaces, the data annotation
attributes and the ability to validate with different levels, let's take a look at how we can
amalgamate these different techniques.

Let's create a BaseNotifyValidationModelExtended class by copying what we have in
our BaseNotifyValidationModel class, and incorporating these following new
additions. First, we need to add some extra using directives to the ones used in the previous
implementation:

using System.Collections.Specialized;
using System.ComponentModel.DataAnnotations;
using CompanyName.ApplicationName.DataModels.Enums;

Next, we need to add our validationLevel field:

private ValidationLevel validationLevel = ValidationLevel.Full;

We need to add a constructor, in which we attach the
ExternalErrors_CollectionChanged event handler to the CollectionChanged event
of the ExternalErrors collection property, as we did earlier:

protected BaseNotifyValidationModelExtended()
{
 ExternalErrors.CollectionChanged += ExternalErrors_CollectionChanged;
}

Implementing Responsive Data Validation Chapter 9

[450]

Now, let's add the familiar ValidationLevel, Errors, and ExternalErrors properties,
along with the abstract ValidateAllProperties method:

public ValidationLevel ValidationLevel
{
 get { return validationLevel; }
 set { if (validationLevel != value) { validationLevel = value; } }
}

public virtual ObservableCollection<string> Errors
{
 get
 {
 ObservableCollection<string> errors = new ObservableCollection<string>
 (AllPropertyErrors.Values.SelectMany(e => e).Distinct());
 ExternalErrors.Where(
 e => !errors.Contains(e)).ForEach(e => errors.Add(e));
 return errors;
 }
}

public ObservableCollection<string> ExternalErrors { get; } =
 new ObservableCollection<string>();

public abstract void ValidateAllProperties();

Note that in this implementation, users of our framework will no longer need to override
the Errors property in order to ensure that their validatable properties are validated.
While we still declare this property as virtual, so that it can be overridden if necessary, this
base class implementation already compiles all validation errors into the internal collection,
ready for display, and should replace the one that we copied from the previous base class.

This time, we initialize a new local errors collection with all of the unique errors from
each property error collection in the AllPropertyErrors property Dictionary object.
We then add any errors from the ExternalErrors collection, if they do not already exist
in the errors collection. This string Errors collection is primarily used because it is
convenient to data bind to in the UI.

After the new Errors property, we see the ExternalErrors auto property with its
initializer and the abstract ValidateAllProperties method that needs to be
implemented in the derived classes and can be called to force a new validation pass, either
pre-emptively, or on the click of a save button, once all fields have been filled. We'll see an
example implementation of this shortly.

Implementing Responsive Data Validation Chapter 9

[451]

Returning to our base class now, after the ValidateAllProperties method, we need to
declare a couple of Validate methods, to replace the one from
the BaseNotifyValidationModel class. The first of these is a convenience method that
accepts any number of property name input parameters and simply calls the second
method once for each property name:

public void Validate(params string[] propertyNames)
{
 foreach (string propertyName in propertyNames)
 Validate(propertyName);
}

public void Validate(string propertyName)
{
 if (ValidationLevel == ValidationLevel.None) return;
 ValidationContext validationContext = new ValidationContext(this);
 List<ValidationResult> validationResults = new List<ValidationResult>();
 Validator.TryValidateObject(this, validationContext, validationResults,
 true);
 IEnumerable<string> allErrors =
 validationResults.Where(v => v.MemberNames.Contains(propertyName)).
 Select(v => v.ErrorMessage).Concat(this[propertyName]);
 UpdateErrors(propertyName, allErrors);
}

In the Validate method, if the ValidationLevel property is set to the None member, we
perform no validation and return from the method immediately. Otherwise, we retrieve the
data annotation-related validation errors, as described earlier, in the Annotating data section.

We then filter just the errors that relate to the property that is specified by
the propertyName input parameter and concatenate them with the collection of errors
returned from the this indexer property. We end by passing the compiled collection,
containing all of the errors, along with the propertyName input parameter, to the
unchanged UpdateErrors method from our BaseNotifyValidationModel class.

Next, we need to add the ExternalErrors_CollectionChanged method, that is now
referenced in the constructor. It simply notifies changes to the Errors collection property
and the HasError property, so that they will be updated in the UI each time an external
error is added or removed:

private void ExternalErrors_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
{
 NotifyPropertyChanged(nameof(Errors), nameof(HasErrors));
}

Implementing Responsive Data Validation Chapter 9

[452]

The HasErrors property can be used to set the visibility of a collection control in the UI so
that it can display the complete collection of errors, whenever any exist, and hide it when
there are none. The last change that we need to make is to add an additional condition to
the HasErrors property, which listens out for external errors, as well the internally
generated ones:

public bool HasErrors => ExternalErrors.Any() ||
 allPropertyErrors.Any(p => p.Value != null && p.Value.Any());

Now, our base validation class will manage errors that are defined in the indexer of each
derived class, along with those defined in any data annotation attributes that may decorate
the class properties and also those generated by external View Models. Let's now see how
we can use this.

Let's first duplicate our ProductNotify class, rename it to ProductNotifyExtended, and
make it extend our new BaseNotifyValidationModelExtended base class. We'll then
need to make these following changes:

public class ProductNotifyExtended :
 BaseNotifyValidationModelExtended
{
 ...

 public override IEnumerable<string> this[string propertyName]
 {
 get
 {
 List<string> errors = new List<string>();
 if (propertyName == nameof(Name))
 {
 ...
 }
 else if (propertyName == nameof(Price) &&
 ValidationLevel == ValidationLevel.Full && Price == 0)
 errors.Add("Please enter a valid price for the product.");
 return errors;
 }
 }

 public override void ValidateAllProperties()
 {
 Validate(nameof(Name), nameof(Price));
 }
}

Implementing Responsive Data Validation Chapter 9

[453]

This new data Model is the same as the duplicated one, other than the name, the base class,
the ValidateAllProperties method, and the addition of the extra condition to the this
indexer, which was discussed in the previous section.

The ValidateAllProperties method calls the Validate method of the base class,
passing in the names of the Name and Price properties, and can be called from a View
Model to validate those two properties at any time. The this indexer has been updated
according to the example from the previous section, to enable the ValidationLevel
property to play its part in the validation process.

Now, let's create a ProductNotifyViewModelExtended class by duplicating and
renaming the ProductNotifyViewModel class and making the following changes:

public class ProductNotifyViewModelExtended : BaseViewModel
{
 private ProductsNotifyExtended products =
 new ProductsNotifyExtended();

 public ProductNotifyViewModelExtended()
 {
 Products.Add(new ProductNotifyExtended() { Id = Guid.NewGuid(),
 Name = "Virtual Reality Headset", Price = 14.99m });
 Products.Add(new ProductNotifyExtended() { Id = Guid.NewGuid(),
 Name = "super virtual reality headset", Price = 49.99m });
 Products.CurrentItem = Products.Last();
 Products.CurrentItem.Validate(nameof(Products.CurrentItem.Name));
 Products.CurrentItem.Validate(nameof(Products.CurrentItem.Price));
 }

 public ProductsNotifyExtended Products
 {
 get { return products; }
 set { if (products != value) { products = value;
 NotifyPropertyChanged(); } }
 }
}

First, we replace all instances of the ProductNotify class with
the ProductNotifyExtended class, and all instances of the ProductsNotify class with
the ProductsNotifyExtended class.

Implementing Responsive Data Validation Chapter 9

[454]

The ProductsNotifyExtended class is the standard wrapper for encapsulating our
BaseCollection class' functionality:

namespace CompanyName.ApplicationName.DataModels.Collections
{
 public class ProductsNotifyExtended :
 BaseCollection<ProductNotifyExtended> { }
}

The final change in the ProductNotifyViewModelExtended class is to alter the values of
the second data item in the constructor to those shown in the new example. Let's also create
a new ProductNotifyViewExtended class from our ProductNotifyView class by
simply duplicating and renaming it. No other changes to it are required at this point.

After wiring up the View and View Model in the App.xaml file and running this example,
we can see that, like our BaseValidationModelExtended example, this implementation
also enables us to display multiple validation errors per property in our global error output
collection control:

Let's now examine how we can customize the way in which we highlight these validation
errors to users.

Customizing the error template
In addition to the essential Errors and HasError properties, the Validation class also
declares an ErrorTemplate Attached Property of the ControlTemplate type. The default
template assigned to this property is responsible for defining the red rectangle that
surrounds UI fields that have validation errors associated with them.

Implementing Responsive Data Validation Chapter 9

[455]

However, this property enables us to change this template and so, we are able to define
how validation errors are highlighted to the application users. As this property is an
Attached Property, this effectively means that we could apply a different template to be
displayed for each control in the UI. However, this cannot be recommended because it
could make the application look less consistent.

This template actually uses an Adorner element to render its graphics in the adorner layer,
on top of the related control in error. Therefore, in order to specify where our error visual(s)
should be rendered in relation to the related control, we need to declare an
AdornedElementPlaceholder element in the error template.

Let's take a look at a simple example, where we define a slightly thicker, non-blurry border,
unlike the default one, and paint over the background of the related control with feint red
for added emphasis. We first need to define a ControlTemplate object in a suitable
resource section:

<ControlTemplate x:Key="ErrorTemplate">
 <Border BorderBrush="Red" BorderThickness="2" Background="#1FFF0000"
 SnapsToDevicePixels="True">
 <AdornedElementPlaceholder />
 </Border>
</ControlTemplate>

In this example, we declare the AdornedElementPlaceholder element inside a Border
element, so that the border will be rendered around the outside of the related control. Note
that without declaring this AdornedElementPlaceholder element, our border would
resemble a tiny red dot in the top left of the related control when an error occurred.

Now, let's see how we apply this template, using our earlier example of the control that was
data bound to the Product.Price property:

<TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Products.CurrentItem.Price,
 UpdateSourceTrigger=PropertyChanged,
 ValidatesOnNotifyDataErrors=True, Delay=250}"
 Style="{StaticResource FieldStyle}"
 Validation.ErrorTemplate="{StaticResource ErrorTemplate}" />

Implementing Responsive Data Validation Chapter 9

[456]

Now, let's see what it looks like when rendered:

If we wanted to position our error highlighting elements in a different position with
relation to the related control in error, we could use one of the panels to position them. Let's
take a look at a slightly more advanced error template that we could use. Let's begin by
declaring some resources in a suitable resource section:

<ToolTip x:Key="ValidationErrorsToolTip">
 <ItemsControl ItemsSource="{Binding}">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding ErrorContent}" />
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
</ToolTip>
<ControlTemplate x:Key="WarningErrorTemplate">
 <StackPanel Orientation="Horizontal">
 <AdornedElementPlaceholder Margin="0,0,10,0" />
 <Image Source="pack://application:,,,/CompanyName.ApplicationName;
 component/Images/Warning_16.png" Stretch="None"
 ToolTip="{StaticResource ValidationErrorsToolTip}" />
 </StackPanel>
</ControlTemplate>

In this example, we declare a ToolTip resource named ValidationErrorsToolTip. In it,
we declare an ItemsControl element to display all of the validation errors together. We
define a DataTemplate element in the ItemTemplate property, which will output the
value of the ErrorContent property of each ValidationError object in the
Validation.Errors collection. This collection will be implicitly set as the data context of
the control template.

Implementing Responsive Data Validation Chapter 9

[457]

Next, we declare a ControlTemplate element to set to the ErrorTemplate property, with
the WarningErrorTemplate key. In it, we define a horizontal StackPanel control and,
within that, we declare the required AdornedElementPlaceholder element. This is
followed by the warning icon, taken from the Visual Studio icon set, that was discussed in
Chapter 8, Creating Visually Appealing User Interfaces, with the
ValidationErrorsToolTip resource applied to its ToolTip property.

We can apply this template using the ErrorTemplate property as follows:

<TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Products.CurrentItem.Price,
 UpdateSourceTrigger=PropertyChanged,
 ValidatesOnNotifyDataErrors=True, Delay=250}"
 Style="{StaticResource FieldStyle}"
 Validation.ErrorTemplate="{StaticResource WarningErrorTemplate}" />

When a validation error now occurs on this TextBox control, it will look like this:

Now that we've investigated a variety of ways to display our validation errors, let's move
on to explore how we can avoid UI-based validation errors altogether.

Avoiding UI-based validation errors
In the last example from the previous section, we data bound the entire
Validation.Errors collection to a tooltip in the error template for our TextBox control.
We also data bound our own Errors collection from our base class to the ItemsControl
element above the form fields.

Implementing Responsive Data Validation Chapter 9

[458]

Our Errors collection can display all of the errors for all of the properties in each data
Model. However, the Validation.Errors collection has access to UI-based validation
errors that never make it back to the View Models. Take a look at the following example:

The UI-based validation error says Value '0t' could not be converted, and that explains
why the View Models never see this error. The type of value expected in the data bound
property is decimal, but an unconvertible value has been entered. Therefore, the input
value cannot be converted to a valid decimal number and so, the data bound value is
never updated.

However, the Validation.Errors collection is a UI element, and each data bound control
has its own collection, and so we have no simple way to access them all from our View
Model classes. Furthermore, the ValidationError class is in the
System.Windows.Controls UI assembly, so we don't want to add a reference of that to
our ViewModels project.

Instead of trying to control the UI-based validation errors from the View Models, we can
alternatively extend controls, or define Attached Properties that restrict the ability of the
users to enter invalid data in the first place, thereby avoiding the need for UI-based
validation. Let's take a look at one way in which we can modify a standard TextBox
control, so that it will only accept numerical input, using our TextBoxProperties class:

using System.Text.RegularExpressions;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;

namespace CompanyName.ApplicationName.Views.Attached
{

Implementing Responsive Data Validation Chapter 9

[459]

 public class TextBoxProperties : DependencyObject
 {
 #region IsNumericOnly

 public static readonly DependencyProperty IsNumericOnlyProperty =
 DependencyProperty.RegisterAttached("IsNumericOnly",
 typeof(bool), typeof(TextBoxProperties),
 new UIPropertyMetadata(default(bool), OnIsNumericOnlyChanged));

 public static bool GetIsNumericOnly(DependencyObject dependencyObject)
 {
 return (bool)dependencyObject.GetValue(IsNumericOnlyProperty);
 }

 public static void SetIsNumericOnly(DependencyObject dependencyObject,
 bool value)
 {
 dependencyObject.SetValue(IsNumericOnlyProperty, value);
 }

 private static void OnIsNumericOnlyChanged(DependencyObject
 dependencyObject, DependencyPropertyChangedEventArgs e)
 {
 TextBox textBox = (TextBox)dependencyObject;
 bool newIsNumericOnlyValue = (bool)e.NewValue;
 if (newIsNumericOnlyValue)
 {
 textBox.PreviewTextInput += TextBox_PreviewTextInput;
 textBox.PreviewKeyDown += TextBox_PreviewKeyDown;
 DataObject.AddPastingHandler(textBox, TextBox_Pasting);
 }
 else
 {
 textBox.PreviewTextInput -= TextBox_PreviewTextInput;
 textBox.PreviewKeyDown -= TextBox_PreviewKeyDown;
 DataObject.RemovePastingHandler(textBox, TextBox_Pasting);
 }
 }

 private static void TextBox_PreviewTextInput(object sender,
 TextCompositionEventArgs e)
 {
 string text = GetFullText((TextBox)sender, e.Text);
 e.Handled = !IsTextValid(text);
 }

 private static void TextBox_PreviewKeyDown(object sender,
 KeyEventArgs e)

Implementing Responsive Data Validation Chapter 9

[460]

 {
 TextBox textBox = (TextBox)sender;
 if (textBox.Text.Length == 1 &&
 (e.Key == Key.Delete || e.Key == Key.Back))
 {
 textBox.Text = "0";
 textBox.CaretIndex = 1;
 e.Handled = true;
 }
 else if (textBox.Text == "0") textBox.Clear();
 else e.Handled = e.Key == Key.Space;
 }

 private static void TextBox_Pasting(object sender,
 DataObjectPastingEventArgs e)
 {
 if (e.DataObject.GetDataPresent(typeof(string)))
 {
 string text = GetFullText((TextBox)sender,
 (string)e.DataObject.GetData(typeof(string)));
 if (!IsTextValid(text)) e.CancelCommand();
 }
 else e.CancelCommand();
 }

 private static string GetFullText(TextBox textBox, string input)
 {
 return textBox.SelectedText.Length > 0 ?
 string.Concat(textBox.Text.Substring(0, textBox.SelectionStart),
 input, textBox.Text.Substring(textBox.SelectionStart +
 textBox.SelectedText.Length)) :
 textBox.Text.Insert(textBox. SelectionStart, input);
 }

 private static bool IsTextValid(string text)
 {
 return Regex.Match(text, @"^\d*\.?\d*$").Success;
 }

 #endregion

 ...
 }
}

Excluding the other, existing members from our TextBoxProperties class, we first
declare the IsNumericOnly Attached Property and its related getter and setter methods
and attach the OnIsNumericOnlyChanged handler.

Implementing Responsive Data Validation Chapter 9

[461]

In the OnIsNumericOnlyChanged method, we first cast the dependencyObject input
parameter to a TextBox element and then cast the NewValue property of the
DependencyPropertyChangedEventArgs class to the bool newIsNumericOnlyValue
variable.

If the newIsNumericOnlyValue variable is true, we attach our event handlers for the
PreviewTextInput, PreviewKeyDown, and DataObject.Pasting events. If the
newIsNumericOnlyValue variable is false, we detach the handlers.

We need to handle all of these events in order to create a TextBox control that can only
enter numerical values. The UIElement.PreviewTextInput event is raised when a
TextBox element receives a text input from any device, the Keyboard.PreviewKeyDown
event occurs specifically when a keyboard key is pressed, and the DataObject.Pasting
event is raised when we paste from the clipboard.

The TextCompositionEventArgs object in the TextBox_PreviewTextInput handler
method only provides us with the last typed character through its Text property, along
with TextComposition details. At the stage that this tunneling event is called, the Text
property of the relevant TextBox control is not yet aware of this latest character.

Therefore, in order to correctly validate the whole entered text value, we need to combine
the existing value with this new character. We do that in the GetFullText method and
pass the returned value to the IsTextValid method.

We then set the inverted return value of the IsTextValid method to the Handled
property of the TextCompositionEventArgs input parameter. Note that we invert this
bool value, because setting the Handled property to true will stop the event from being
routed any further and result in the latest character not being accepted. Therefore, we do
this when the input value is invalid.

Next, we see the TextBox_PreviewKeyDown event handler method, and in it, we again
start by casting the sender input parameter to a TextBox instance. We specifically need to
handle this event, because the PreviewTextInput event does not get raised when the
Space bar, Delete, or Backspace keys on the keyboard are pressed.

Implementing Responsive Data Validation Chapter 9

[462]

Therefore, we stop the event being routed any further by setting the Handled property of
the KeyEventArgs input parameter to true if the pressed key is the Space bar key, or if the
length of the entered text is a single character and the Delete or Backspace key is pressed; this
stops the user from deleting the last character from the TextBox control, which would
result in a UI-based validation error.

However, if the user was trying to delete the last character because it was incorrect and
they wanted to replace it with a different value, this could be awkward. Therefore, in this
situation, we replace the last character with a zero and place the caret position after it,
which then enables the user to type a different value. Note our extra condition that clears
the text if the input is 0, so that it will be replaced with the typed character.

In the TextBox_Pasting handler method, we check whether the DataObject property
that is accessed from the DataObjectPastingEventArgs input parameter has any
string data available, and call its CancelCommand method to cancel the paste operation if
not.

If string data is present, we cast the sender input parameter to a TextBox instance and
then pass the data from the DataObject property to the GetFullText method to
reconstruct the whole entered string. We pass the reconstructed text to the IsTextValid
method and, if it is invalid, then we call the CancelCommand method to cancel the paste
operation.

Next is the GetFullText method, where the entered text from the TextBox element is
reconstructed. In this method, if any text is selected in the TextBox control, we rebuild the
string by concatenating the portion of text before the selection with the newly entered or
pasted text and the portion of text after the selection. Otherwise, we use the Insert
method of the String class, along with the TextBox control's SelectionStart property,
to insert the new character into the appropriate place in the string.

At the end of the class, we see the IsTextValid method, which simply returns the
Success property value of the Regex.Match method. The regular expression that we
validate with is as follows:

@"^\d*\.?\d*$"

The ampersand (@)marks the string as a Verbatim String Literal, which is useful when using
characters that normally need to be escaped, the caret (^) signifies the start of the input line,
\d* indicates that we can have zero or more numerical digits, \.? specifies that zero or one
periods are then valid, \d* again indicates that we can then have zero or more numerical
digits, and finally, $ signifies the end of the input line.

Implementing Responsive Data Validation Chapter 9

[463]

When attached to an ordinary TextBox control, we can now only enter numeric values, but
both integer and decimal values are allowed. Note that this particular implementation does
not accept the minus sign, as we don’t want to allow negative prices, but that could be
easily changed. Using our earlier ProductNotifyViewExtended example, we can attach
our new property like this:

xmlns:Attached="clr-namespace:CompanyName.ApplicationName.Views.Attached"
...
<TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Products.CurrentItem.Price,
 UpdateSourceTrigger=PropertyChanged,
 ValidatesOnNotifyDataErrors=True, Delay=250}"
 Style="{StaticResource FieldStyle}"
 Attached:TextBoxProperties.IsNumericOnly="True" />

Keeping Synchronized with Legacy
Behavior
Those of you who have been experimenting with our various Product-related examples
may have noticed something peculiar occurring when attempting to enter a price. In .NET
4.5, Microsoft decided to introduce a breaking change to the way that data is entered in the
TextBox control, when the binding UpdateSourceTrigger value is set to
PropertyChanged.

From .NET 4.5, we can no longer enter a numerical separator, neither a period nor a
comma, when we have data bound the TextBox.Text property to a float, double, or
decimal data type. The reason why they did this was because previously, the value
displayed in the TextBox control would get out of sync with the data bound value, at the
moment when the user types a non-numerical character.

Let’s investigate this situation; A user wants to enter 0.99 and, after the second character,
the input value of 0. is sent back to the data bound View Model. But as it is not a valid
decimal value, it is therefore parsed to 0 and that value is sent back to the data bound
Textbox element to be displayed. Therefore, the second character, the decimal point, is
removed from the Text field.

Unfortunately, this change means that users can no longer directly type decimal places into
a TextBox control when the UpdateSourceTrigger property is set to PropertyChanged.
This can be seen in our ProductView example, where there is simply no way to enter a
valid value with decimal places in the TextBox control labeled Price.

Implementing Responsive Data Validation Chapter 9

[464]

There are a number of ways to get around this issue, but none of them are perfect. One
simple way is to set the Mode property on the Binding element to the OneWayToSource
member, to stop the value being returned from the View Model, although this will also stop
any initial default values being sent as well.

When this breaking change was announced in .NET 4.5, a new property was introduced
along with the change; The KeepTextBoxDisplaySynchronizedWithTextProperty
property was added to the FrameworkCompatibilityPreferences class and specifies
whether a TextBox control should display the same as its data bound property value. If we
set this to false, it should return the previous behavior:

FrameworkCompatibilityPreferences.
 KeepTextBoxDisplaySynchronizedWithTextProperty = false;

Note that we need to set this property very early in the application lifetime, such as in the
constructor of the App.xaml.cs file. Once set, it cannot be changed. Another way to avoid
this problem is to set the UpdateSourceTrigger property to any value other than
PropertyChanged:

<TextBox Text="{Binding Products.CurrentItem.Price,
 Style="{StaticResource FieldStyle}" UpdateSourceTrigger=LostFocus ... />

However, this is no use if we want to validate pre-emptively, or want our data source to
update with each key press. Alternatively, we could simply data bind a string property to
our TextBox control and perform our own number parsing in our View Model. This is
perhaps the best solution from a user’s point of view, as it would enable them to type their
values with ease.

Another option would be to utilize the Delay property of the Binding class, that we
discussed in Chapter 4, Becoming Proficient with Data Binding. If we set this to a figure of
just a few hundred milliseconds, this would give the user enough time to enter their
number, including the decimal point and the following digit(s), before the value is parsed
to the data bound type:

<TextBox Text="{Binding Products.CurrentItem.Price,
 UpdateSourceTrigger=PropertyChanged, Delay=250}" ... />

This is the option that we used in our examples, primarily because it is a quick and easy fix
for this problem. However, care should be taken when using this method with actual
monetary properties, as mistakes can easily be made if the user types slowly and does not
pay attention to the entered value.

Implementing Responsive Data Validation Chapter 9

[465]

As always with WPF, there are a number of different ways to implement any solution. As
we just saw in the previous section, there are also other ways to stop users from entering
invalid data in the first place; we could build, or make use of a third-party numeric
up/down control, enable users to enter time values using a custom clock control, or even
use combo boxes to restrict the values that users can select to a set of allowable values.

Amalgamating validation and visuals
Let's now utilize some of the techniques that we discussed in Chapter 8, Creating Visually
Appealing User Interfaces, to design a visually appealing user interface that highlights
validation errors in a novel way, using our glowing example. For this example, we want the
ability to know when the data has changed, so we'll need to extend our
earlier BaseSynchronizableDataModel class in another new base class.

Let's duplicate our BaseNotifyValidationModelExtended class so as to create a
new BaseNotifyValidationModelGeneric class, and make it extend our synchronizable
base class. In doing so, we will also need to make it generic and add the same generic
constraints for the T generic type parameter from the base class to its declaration:

using CompanyName.ApplicationName.DataModels.Interfaces;

...

public abstract class BaseNotifyValidationModelGeneric<T> :
 BaseSynchronizableDataModel<T>, INotifyPropertyChanged,
 INotifyDataErrorInfo
 where T : BaseDataModel, ISynchronizableDataModel<T>, new()

We'll need to remove the copied implementation of
the INotifyPropertyChanged interface and make use of the existing implementation
from the BaseSynchronizableDataModel class instead. We'll also need to implement the
new base class' required members in a new ProductNotifyGeneric class. Let's start by
duplicating the ProductNotifyExtended class, renaming it
to ProductNotifyGeneric, and then adding these methods to the end of it:

public class ProductNotifyGeneric :
 BaseNotifyValidationModelGeneric<ProductNotifyGeneric>
{
 ...
 public override void CopyValuesFrom(ProductNotifyGeneric product)
 {
 Id = product.Id;
 Name = product.Name;

Implementing Responsive Data Validation Chapter 9

[466]

 Price = product.Price;
 }
 public override bool PropertiesEqual(ProductNotifyGeneric otherProduct)
 {
 if (otherProduct == null) return false;
 return Id == otherProduct.Id && Name == otherProduct.Name &&
 Price == otherProduct.Price;
 }

 public override string ToString()
 {
 return $"{Name}: £{Price:N2}";
 }
}

First, we extend from our new generic BaseNotifyValidationModelGeneric class and
implement all required members of the base class; the CopyValuesFrom method is used to
make cloned copies of the data object, the PropertiesEqual method is used to compare
its property values with other ProductNotifyGeneric instances, and the ToString
method provides a useful textual output for the class.

Now that we have extended our BaseNotifyValidationModelGeneric class from our
earlier BaseSynchronizableDataModel class and extended from this, in turn, in
our ProductNotifyGeneric class, we can now create a
new ProductsNotifyGeneric collection class to extend our
earlier BaseSynchronizableCollection class:

public class ProductsNotifyGeneric :
 BaseSynchronizableCollection<ProductNotifyGeneric> { }

Let's now create a View Model for this new example, where we will use these new Models.
We can start by duplicating the ProductViewModelExtended View Model and renaming
it to ProductNotifyViewModelGeneric. We will need to replace all instances of the
ProductExtended class with our new ProductNotifyGeneric class, and all instances of
the ProductsExtended collection class with the new ProductsNotifyGeneric class.

After adding the two unchanged products from the previous View Model to it, we can now
call the Synchronize method on our new ProductsNotifyGeneric collection in the
constructor, in order to set the unchanged state of all of the contained data items:

public ProductNotifyViewModelGeneric()
{
 Products.Add(new ProductNotifyGeneric() { Id = Guid.NewGuid(),
 Name = "Virtual Reality Headset", Price = 14.99m });
 Products.Add(new ProductNotifyGeneric() { Id = Guid.NewGuid(),

Implementing Responsive Data Validation Chapter 9

[467]

 Name = "Virtual Reality Headset" });
 Products.Synchronize();
 Products.CurrentItemChanged += Products_CurrentItemChanged;
 Products.CurrentItem = Products.Last();
 Products.CurrentItem.Validate(nameof(Products.CurrentItem.Name),
 nameof(Products.CurrentItem.Price));
 ValidateUniqueName(Products.CurrentItem);
}

The only other change in the constructor is that we now call the base class Validate
method on the current item, passing in the names of the Name and Price properties, which
validates these fields in a pre-emptive manner, before the user has a chance to enter any
data.

The final thing that we need to add to this class is a number of methods that handle a
command from the UI:

using System.Windows.Input;
using CompanyName.ApplicationName.ViewModels.Commands;

...

public ICommand DeleteCommand
{
 get { return new ActionCommand(action => Delete(action),
 canExecute => CanDelete(canExecute)); }
}

private bool CanDelete(object parameter)
{
 return Products.Contains((ProductNotifyGeneric)parameter);
}

private void Delete(object parameter)
{
 Products.Remove((ProductNotifyGeneric)parameter);
}

Here, we use our ActionCommand class to create an ICommand instance, which users can
use to delete the selected item from the product collection in the UI. In the CanDelete
method, we verify that the item to delete actually exists in the collection, but this can be
replaced with your own condition. For example, you could check whether the item has any
changes, or whether the current user has the correct security permission to delete objects. In
the Delete method, we simply remove the selected item from the collection.

Implementing Responsive Data Validation Chapter 9

[468]

Now that our View Model is ready, let's turn our attention to the accompanying View. For
this, let's create a new View and name it ProductNotifyViewGeneric. We'll then need to
supply some more resources to use in this example. Let's start by adding two further glow
brush resources to the application resources file, with the GreenGlow brush resource from
Chapter 8, Creating Visually Appealing User Interfaces:

<RadialGradientBrush x:Key="BlueGlow" Center="0.5,0.848"
 GradientOrigin="0.5,0.818" RadiusX="-1.424" RadiusY="-0.622"
 RelativeTransform="{StaticResource GlowTransformGroup}">
 <GradientStop Color="#CF01C7FF" Offset="0.168" />
 <GradientStop Color="#4B01C7FF" Offset="0.478" />
 <GradientStop Color="#1101C7FF" Offset="1" />
</RadialGradientBrush>
<RadialGradientBrush x:Key="RedGlow" Center="0.5,0.848"
 GradientOrigin="0.5,0.818" RadiusX="-1.424" RadiusY="-0.622"
 RelativeTransform="{StaticResource GlowTransformGroup}">
 <GradientStop Color="#CFFF0000" Offset="0.168" />
 <GradientStop Color="#4BFF0000" Offset="0.478" />
 <GradientStop Color="#00FF0000" Offset="1" />
</RadialGradientBrush>

Let's now see the styles that use these brush resources:

<Style x:Key="GlowStyle" TargetType="{x:Type Rectangle}">
 <Setter Property="SnapsToDevicePixels" Value="True" />
 <Setter Property="Opacity" Value="1.0" />
 <Setter Property="StrokeThickness" Value="0" />
 <Setter Property="RadiusX" Value="2.5" />
 <Setter Property="RadiusX" Value="2.5" />
 <Setter Property="IsHitTestVisible" Value="False" />
 <Setter Property="VerticalAlignment" Value="Stretch" />
 <Setter Property="HorizontalAlignment" Value="Stretch" />
 <Setter Property="Fill" Value="{StaticResource BlueGlow}" />
</Style>

This first style is reusable and can be declared in the global application resources, while the
following styles extend the first, are data Model-specific, and could be declared locally in
our new ProductNotifyViewGeneric class:

<Style x:Key="ProductGlowStyle" TargetType="{x:Type Rectangle}"
 BasedOn="{StaticResource GlowStyle}">
 <Style.Triggers>
 <DataTrigger Binding="{Binding Products.CurrentItem.HasChanges,
 FallbackValue=False, Mode=OneWay}" Value="True">
 <Setter Property="Fill" Value="{StaticResource GreenGlow}" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Products.CurrentItem.HasErrors,

Implementing Responsive Data Validation Chapter 9

[469]

 FallbackValue=False, Mode=OneWay}" Value="True">
 <Setter Property="Fill" Value="{StaticResource RedGlow}" />
 </DataTrigger>
 </Style.Triggers>
</Style>
<Style x:Key="ProductItemGlowStyle" TargetType="{x:Type Rectangle}"
 BasedOn="{StaticResource GlowStyle}">
 <Style.Triggers>
 <DataTrigger Binding="{Binding HasChanges, FallbackValue=False,
 Mode=OneWay}" Value="True">
 <Setter Property="Fill" Value="{StaticResource GreenGlow}" />
 </DataTrigger>
 <DataTrigger Binding="{Binding HasErrors, FallbackValue=False,
 Mode=OneWay}" Value="True">
 <Setter Property="Fill" Value="{StaticResource RedGlow}" />
 </DataTrigger>
 </Style.Triggers>
</Style>

We declare the ProductGlowStyle style for our form rectangle, and the
ProductItemGlowStyle style for our data items in the Products collection. The only
differences can be found in the binding paths of the two data triggers.

In these styles, we add a DataTrigger element that sets the rectangle Fill property to the
GreenGlow resource when the HasChanges property of the current item in the Products
collection is True, and another that sets it to the RedGlow resource when the HasErrors
property of the current item is True. As the trigger that highlights errors is declared after
the one that highlights valid changes, this will override the first if both conditions are True,
which is essential for this example.

Next, we need to alter our default styles, which we added to the application resources for
our first product example. Let's add these new styles that are based on the original ones to
our ProductNotifyViewGeneric class, so that they override the default ones:

<Style x:Key="WhiteLabelStyle" TargetType="{x:Type TextBlock}"
 BasedOn="{StaticResource LabelStyle}">
 <Setter Property="Foreground" Value="White" />
</Style>
<Style x:Key="ErrorFreeFieldStyle" TargetType="{x:Type TextBox}"
 BasedOn="{StaticResource FieldStyle}">
 <Setter Property="Validation.ErrorTemplate" Value="{x:Null}" />
</Style>

Implementing Responsive Data Validation Chapter 9

[470]

As these new styles are based on the previous ones, we keep the same attribute values, but
add a further one to each style. The WhiteLabelStyle style sets the Foreground property
to White, and the ErrorFreeFieldStyle style sets
the Validation.ErrorTemplate Attached Property to null, as we will have other ways
to highlight validation errors in this example.

Let's now see the data template resource for the new ProductNotifyGeneric class, which
makes use of our new ProductItemGlowStyle style, first ensuring that we have added a
couple of XML namespace prefixes for our DataModels and Views projects:

xmlns:DataModels="clr-namespace:CompanyName.ApplicationName.DataModels;
 assembly=CompanyName.ApplicationName.DataModels"
xmlns:Views="clr-namespace:CompanyName.ApplicationName.Views"
...
<DataTemplate DataType="{x:Type DataModels:ProductNotifyGeneric}">
 <Border CornerRadius="3" BorderBrush="{StaticResource TransparentBlack}"
 BorderThickness="1" Background="{StaticResource TransparentWhite}">
 <Border Name="InnerBorder" CornerRadius="2" Margin="1"
 Background="{StaticResource LayeredButtonBackground}">
 <Grid>
 <Rectangle IsHitTestVisible="False" RadiusX="2" RadiusY="2"
 Style="{StaticResource ProductItemGlowStyle}" />
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image Width="24" Height="24"
 Source="pack://application:,,,/CompanyName.ApplicationName;
 component/Images/Product.ico" VerticalAlignment="Center"
 Margin="3,2,5,2" />
 <TextBlock Grid.Column="1" HorizontalAlignment="Left"
 VerticalAlignment="Center" Text="{Binding Name}"
 TextWrapping="Wrap" Margin="0,1,5,3" Foreground="White"
 FontSize="14" Validation.ErrorTemplate="{x:Null}" />
 <Button Grid.Column="2"
 Command="{Binding DataContext.DeleteCommand,
 RelativeSource={RelativeSource FindAncestor,
 AncestorType={x:Type Views:ProductNotifyViewGeneric}}}"
 CommandParameter="{Binding}" Margin="0,2,4,2"
 Width="20" Height="20">
 <Image Width="16" Height="16"
 Source="pack://application:,,,/CompanyName.ApplicationName;
 component/Images/Delete_16.png"
 HorizontalAlignment="Center" VerticalAlignment="Center" />
 </Button>

Implementing Responsive Data Validation Chapter 9

[471]

 </Grid>
 </Grid>
 </Border>
 </Border>
</DataTemplate>

In this example, we reuse our double border technique from Chapter 8, Creating Visually
Appealing User Interfaces, so there's no need to examine that code again. Inside the borders,
we declare a Grid panel, which contains a Rectangle element, that has our new
ProductItemGlowStyle style applied to it, and another Grid panel to display each user's
name and a couple of images.

These images are from the Visual Studio Image Library, which we discussed earlier, and we
use the first to signify that these objects are products. The VerticalAlignment property of
each of the three elements is set to Center, to ensure that they are all aligned vertically, and
the TextWrapping property of the TextBlock element is set to Wrap in case any products
have a long name.

Note that the ErrorTemplate property of the Validation class has been set to null here
in order to remove the default error template, which usually shows up as an unappealing
red rectangle. As we make the entire object glow red when it has an error, there is no need
for the default template to be displayed as well.

The second image specifies that each of these items can be deleted. Note that it is declared
within a Button control, and while we have not attempted to style that button, it could also
be given the double border treatment, or any other custom style. This button is optional,
but has been included merely as an example of linking a command from the View Model to
each data object.

Note that the binding path in the button's Command property uses a RelativeSource
binding to reference the ancestor of the ProductNotifyViewGeneric type. In particular, it
references the DeleteCommand property of the DataContext of the View, which, in our
case, is an instance of our ProductNotifyViewModelGeneric class.

The CommandParameter property is then data bound to the entire data context of each data
template, which means that the whole ProductNotifyGeneric data Model object will be
passed through as the command parameter. Using our ActionCommand class, this is
specified by the action and canExecute fields in the earlier example from
our ProductNotifyViewModelGeneric class.

Implementing Responsive Data Validation Chapter 9

[472]

Now that we have styled our ProductNotifyGeneric items in the ListBox control with
this data template, there is something else that we can do to improve the look further; we
can remove the default selection rectangle of the ListBoxItem elements that wrap our data
Models. In .NET 3.5 and before, we could simply add some resources to a style for the
ListBoxItem class that would do the job for us:

<Style TargetType="{x:Type ListBoxItem}">
 <Style.Resources>
 <SolidColorBrush x:Key="{x:Static SystemColors.HighlightBrushKey}"
 Color="Transparent" />
 <SolidColorBrush x:Key="{x:Static SystemColors.ControlBrushKey}"
 Color="Transparent" />
 <SolidColorBrush x:Key="{x:Static SystemColors.HighlightTextBrushKey}"
 Color="Black" />
 <SolidColorBrush x:Key="{x:Static SystemColors.ControlTextBrushKey}"
 Color="Black" />
 </Style.Resources>
</Style>

However, from .NET 4.0 onward, this will no longer work. Instead, we now need to define
a new ControlTemplate object for the ListBoxItem class that does not highlight its
background when selected, or when the user's mouse cursor is over it:

<Style TargetType="{x:Type ListBoxItem}">
 <Setter Property="Padding" Value="0" />
 <Setter Property="Margin" Value="2,2,2,0" />
 <Setter Property="BorderThickness" Value="1" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBoxItem}">
 <Border x:Name="Bd" BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{TemplateBinding Background}"
 Padding="{TemplateBinding Padding}" SnapsToDevicePixels="True">
 <ContentPresenter
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Content="{TemplateBinding Content}"
 ContentStringFormat="{TemplateBinding ContentStringFormat}"
 HorizontalAlignment="{TemplateBinding
 HorizontalContentAlignment}"
 SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
 />
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property="IsEnabled" Value="False">
 <Setter Property="TextElement.Foreground"

Implementing Responsive Data Validation Chapter 9

[473]

 TargetName="Bd" Value="{DynamicResource
 {x:Static SystemColors.GrayTextBrushKey}}" />
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

To create the ControlTemplate element in this style, we first accessed the default
template of the ListBoxItem class, as described in the Modifying Existing Controls section
of Chapter 5, Using the Right Controls for the Job, and then simply removed the triggers that
colored the background. We then added it to a style with no x:Key directive, so that it will
be implicitly applied to all ListBoxItem elements within scope.

Next, we have the ErrorBorderStyle style, which styles the border of our global
validation error display and uses our BoolToVisibilityConverter class to set the
Visibility property to show the control when the HasErrors property of the current
item in the Products collection is True:

<Style x:Key="ErrorBorderStyle" TargetType="{x:Type Border}">
 <Setter Property="BorderBrush" Value="#7BFF0000" />
 <Setter Property="Background" Value="#FFFFDFE1" />
 <Setter Property="BorderThickness" Value="1" />
 <Setter Property="CornerRadius" Value="2.75" />
 <Setter Property="Padding" Value="5,3" />
 <Setter Property="Margin" Value="0,0,0,5" />
 <Setter Property="SnapsToDevicePixels" Value="True" />
 <Setter Property="Visibility"
 Value="{Binding Products.CurrentItem.HasErrors,
 Converter={StaticResource BoolToVisibilityConverter},
 FallbackValue=Collapsed, Mode=OneWay}" />
</Style>

Now that we've added all of the required resources for our View, let's move on to see the
XAML file in the ProductNotifyViewGeneric class that uses them:

<Grid Margin="20">
 <Grid.Resources>
 ...
 </Grid.Resources>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ListBox ItemsSource="{Binding Products}"

Implementing Responsive Data Validation Chapter 9

[474]

 SelectedItem="{Binding Products.CurrentItem}" Margin="0,0,20,0"
 HorizontalContentAlignment="Stretch" />
 <Border Grid.Column="1" CornerRadius="3"
 BorderBrush="{StaticResource TransparentBlack}" BorderThickness="1"
 Background="{StaticResource TransparentWhite}">
 <Border Name="InnerBorder" CornerRadius="2" Margin="1"
 Background="{StaticResource LayeredButtonBackground}">
 <Grid>
 <Rectangle IsHitTestVisible="False" RadiusX="2" RadiusY="2"
 Style="{StaticResource ProductGlowStyle}" />
 <Grid Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Text="Name"
 Style="{StaticResource WhiteLabelStyle}" />
 <TextBox Grid.Column="1"
 Text="{Binding Products.CurrentItem.Name,
 UpdateSourceTrigger=PropertyChanged}"
 Style="{StaticResource ErrorFreeFieldStyle}" />
 <TextBlock Grid.Row="1" Text="Price"
 Style="{StaticResource WhiteLabelStyle}" />
 <TextBox Grid.Row="1" Grid.Column="1"
 Text="{Binding Products.CurrentItem.Price,
 UpdateSourceTrigger=PropertyChanged, Delay=250}"
 Style="{StaticResource ErrorFreeFieldStyle}"
 Attached:TextBoxProperties.IsNumericOnly="True" />
 <Border Grid.Row="2" Grid.ColumnSpan="2" Style="{StaticResource
 ErrorBorderStyle}" Margin="0,0,0,10" Padding="10">
 <ItemsControl ItemsSource="{Binding
Products.CurrentItem.Errors}"
 ItemTemplate="{StaticResource WrapTemplate}" />
 </Border>
 </Grid>
 </Grid>
 </Border>
 </Border>
</Grid>

Implementing Responsive Data Validation Chapter 9

[475]

We use the same Grid panel as in the last example, with a ListBox control on the left and
some form controls on the right. Note that we set the HorizontalContentAlignment
property to Stretch on the ListBox control to ensure that its ListBoxItem elements
stretch to fit its whole width.

On the right, we see the double borders and the Rectangle element that is painted with
the glow color resource that we created in Chapter 8, Creating Visually Appealing User
Interfaces. Rather than hardcoding one particular color resource, as we did earlier, we
instead apply our new ProductGlowStyle style to it, which will change the color with its
data triggers, according to the validity of the data.

Note that we have added an outer Grid panel, that contains only the glow rectangle and
the original Grid panel, which now adds an outer margin to our form. The original panel
remains much unchanged from the previous example, although the error display border
now uses our new ErrorBorderStyle style and is displayed underneath the form fields,
in acknowledgment that some users don't like their fields moving as errors appear and
disappear.

The form fields also mostly remain the same, although when using our new
implementation, we no longer need to set the ValidatesOnNotifyDataErrors property
to True on each binding. We also apply our new WhiteLabelStyle and
ErrorFreeFieldStyle styles to the form labels and fields, to color the label foreground
white and to hide the default red error border when there are validation errors.

When running this View now, it would render the following visual output, with a red glow
on the form and the item in error:

Implementing Responsive Data Validation Chapter 9

[476]

After correcting the errors, we'll see a green glow on the form and the edited item:

After saving the changes, we'd need to call the Synchronize method on the Products
collection again and then we'd see the following screenshot, where all objects are now
painted with the default blue glow:

In this way, we are able to use the color of the glow to clearly inform users of the state of
the control at any given time.

Summary
In this chapter, we had a thorough look at the data validation options that the .NET
Framework offers us, primarily concentrating on a variety of ways to implement the two
available validation interfaces. We investigated the use of the data annotation validation
attributes, explored the provision of custom error templates, and aggregated our new
found knowledge with that from Chapter 8, Creating Visually Appealing User Interfaces, in
order to build up a visually pleasing validation example.

In the next chapter, we'll look at a number of ways in which we can provide users of our
applications with a great user experience, from asynchronous programming to feedback
mechanisms. We will also examine how to make use of application settings to provide user
preferences and explore a variety of ways of supplying in-application help to the
application users. We will end with a further look into additional ways of improving the
user experience for end users.

10
Completing that Great User

Experience
As we have seen, it is easy to add form fields to a View and produce visually appealing and
functionally adequate applications. However, it can take a lot more work to provide the
end user with an interface that truly ticks all of the boxes. For example, how many times
have you clicked on a button in an application and had the whole application freeze while
it does some work?

In this chapter, we'll look into solving this problem by using asynchronous programming,
along with a number of other ways of improving the user experience for the end user. For
example, we'll investigate enabling the users to customize their versions of the application
using their own user preference settings.

We'll discuss keeping the users informed by providing user feedback, and update our
application framework by adding a feedback system. We'll explore a few alternative
methods of providing in-application help files and documentation and a number of other
ways of making the application more user friendly and the life of the users that much
easier.

Providing user feedback
One essential facet of a great application is keeping the end users up to date with what's
going on in the application. If they click on a function button, they should be informed as to
the progress or the status of the operation. Without adequate feedback, the user can be left
wondering whether a particular operation worked and may attempt to run it several times,
possibly causing errors.

Completing that Great User Experience Chapter 10

[478]

It is, therefore, essential to implement a feedback system in our application framework. So
far in this book, we've seen the name of the FeedbackManager class in a few places,
although we've seen very little implementation. Let's now see how we can implement a
working feedback system in our application framework, starting with the Feedback class
that holds the individual feedback messages:

using System;
using System.ComponentModel;
using CompanyName.ApplicationName.DataModels.Enums;
using CompanyName.ApplicationName.DataModels.Interfaces;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.DataModels
{
 public class Feedback : IAnimatable, INotifyPropertyChanged
 {
 private string message = string.Empty;
 private FeedbackType type = FeedbackType.None;
 private TimeSpan duration = new TimeSpan(0, 0, 4);
 private bool isPermanent = false;
 private Animatable animatable;

 public Feedback(string message, FeedbackType type, TimeSpan duration)
 {
 Message = message;
 Type = type;
 Duration = duration == TimeSpan.Zero ? this.duration : duration;
 IsPermanent = false;
 Animatable = new Animatable(this);
 }
 public Feedback(string message, bool isSuccess, bool isPermanent) :
 this(message, isSuccess ? FeedbackType.Success :
 FeedbackType.Error, TimeSpan.Zero)
 {
 IsPermanent = isPermanent;
 }

 public Feedback(string message, FeedbackType type) : this(message,
 type, TimeSpan.Zero) { }

 public Feedback(string message, bool isSuccess) : this(message,
 isSuccess ? FeedbackType.Success : FeedbackType.Error,
 TimeSpan.Zero) { }

 public Feedback() : this(string.Empty, FeedbackType.None) { }

 public string Message

Completing that Great User Experience Chapter 10

[479]

 {
 get { return message; }
 set { message = value; NotifyPropertyChanged(); }
 }

 public TimeSpan Duration
 {
 get { return duration; }
 set { duration = value; NotifyPropertyChanged(); }
 }

 public FeedbackType Type
 {
 get { return type; }
 set { type = value; NotifyPropertyChanged(); }
 }

 public bool IsPermanent
 {
 get { return isPermanent; }
 set { isPermanent = value; NotifyPropertyChanged(); }
 }

 #region IAnimatable Members

 public Animatable Animatable
 {
 get { return animatable; }
 set { animatable = value; }
 }

 #endregion

 #region INotifyPropertyChanged Members

 ...

 #endregion
 }
}

Note that our Feedback class implements the IAnimatable interface, which we saw
earlier, along with the INotifyPropertyChanged interface. After declaring the private
fields, we declare a number of useful constructor overloads.

Completing that Great User Experience Chapter 10

[480]

In this example, we have hardcoded a default feedback display duration of four seconds for
the duration field. In the main constructor, we set the Duration property dependent
upon the value of the duration input parameter; if the input parameter is the
TimeSpan.Zero field, then the default value is used, but if the input parameter is a non-
zero value, it will be used.

The Message property will hold the feedback message; the Duration property specifies
the length of time that the message will be displayed; the Type property uses the
FeedbackType enumeration that we saw earlier to specify the type of the message, and the
IsPermanent property dictates whether the message should be permanently displayed
until the user manually closes it or not.

The implementation of our IAnimatable class is shown beneath the other properties, and
simply consists of the Animatable property, but our implementation of the
INotifyPropertyChanged interface has been omitted for brevity, as we are using the
default implementation that we saw earlier.

Let's now see the FeedbackCollection class that will contain the individual Feedback
instances:

using System.Collections.Generic;
using System.Linq;

namespace CompanyName.ApplicationName.DataModels.Collections
{
 public class FeedbackCollection : BaseAnimatableCollection<Feedback>
 {
 public FeedbackCollection(IEnumerable<Feedback> feedbackCollection) :
 base(feedbackCollection) { }

 public FeedbackCollection() : base() { }

 public new void Add(Feedback feedback)
 {
 if (!string.IsNullOrEmpty(feedback.Message) && (Count == 0 ||
 !this.Any(f => f.Message == feedback.Message))) base.Add(feedback);
 }

 public void Add(string message, bool isSuccess)
 {
 Add(new Feedback(message, isSuccess));
 }
 }
}

Completing that Great User Experience Chapter 10

[481]

The FeedbackCollection class extends the BaseAnimatableCollection class, which
we saw earlier, and sets its generic type parameter to the Feedback class. This is a very
simple class and declares a couple of constructors, passing any input parameters straight
through to the base class constructors.

In addition to this, it declares two Add methods, with the second simply creating a
Feedback object from its input parameters and passing it to the first method. The first
method first checks that the feedback message is not null or empty and that an identical
message is not already contained in the feedback collection, before adding the new message
to the collection.

Note that our current implementation uses the base class Add method to add the new items
to the end of the feedback collection. We could alternatively use the Insert method from
the base class here to add new items to the start of the collection instead.

Let's now look at the FeedbackManager class that uses these two classes internally:

using System.ComponentModel;
using System.Runtime.CompilerServices;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.DataModels.Collections;

namespace CompanyName.ApplicationName.Managers
{
 public class FeedbackManager : INotifyPropertyChanged
 {
 private static FeedbackCollection feedback = new FeedbackCollection();
 private static FeedbackManager instance = null;

 private FeedbackManager() { }

 public static FeedbackManager Instance =>
 instance ?? (instance = new FeedbackManager());

 public FeedbackCollection Feedback
 {
 get { return feedback; }
 set { feedback = value; NotifyPropertyChanged(); }
 }

 public void Add(Feedback feedback)
 {
 Feedback.Add(feedback);
 }

 public void Add(string message, bool isSuccess)

Completing that Great User Experience Chapter 10

[482]

 {
 Add(new Feedback(message, isSuccess));
 }

 #region INotifyPropertyChanged Members

 ...

 #endregion
 }
}

The FeedbackManager class also implements the INotifyPropertyChanged interface,
and in it we see the static FeedbackCollection field. Next, we see the static instance
field, the private constructor, and the static Instance property of type FeedbackManager,
which instantiates the instance field on the first use and tells us that this class follows the
Singleton pattern.

The Feedback property follows and is the class access to the FeedbackCollection field.
After that, we see a number of convenient overloads of the Add method that enables
developers to add feedback using different parameters. Our implementation of the
INotifyPropertyChanged interface here has again been omitted for brevity, but it uses
our default implementation that we saw earlier.

Let's now focus on the XAML of the FeedbackControl object:

<UserControl
 x:Class="CompanyName.ApplicationName.Views.Controls.FeedbackControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls="clr-namespace:CompanyName.ApplicationName.Views.Controls"
 xmlns:Converters="clr-namespace:CompanyName.ApplicationName.Converters;
 assembly=CompanyName.ApplicationName.Converters"
 xmlns:DataModels="clr-namespace:CompanyName.ApplicationName.DataModels;
 assembly=CompanyName.ApplicationName.DataModels"
 xmlns:Panels="clr-namespace:CompanyName.ApplicationName.Views.Panels">
 <UserControl.Resources>
 <Converters:FeedbackTypeToImageSourceConverter
 x:Key="FeedbackTypeToImageSourceConverter" />
 <Converters:BoolToVisibilityConverter
 x:Key="BoolToVisibilityConverter" />
 <ItemsPanelTemplate x:Key="AnimatedPanel">
 <Panels:AnimatedStackPanel />
 </ItemsPanelTemplate>
 <Style x:Key="SmallImageInButtonStyle" TargetType="{x:Type Image}"
 BasedOn="{StaticResource ImageInButtonStyle}">

Completing that Great User Experience Chapter 10

[483]

 <Setter Property="Width" Value="16" />
 <Setter Property="Height" Value="16" />
 </Style>
 <DataTemplate x:Key="FeedbackTemplate" DataType="{x:Type
 DataModels:Feedback}">
 <Grid Margin="2,1,2,0" MouseEnter="Border_MouseEnter"
 MouseLeave="Border_MouseLeave">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="16" />
 <ColumnDefinition />
 <ColumnDefinition Width="24" />
 </Grid.ColumnDefinitions>
 <Image Stretch="None" Source="{Binding Type,
 Converter={StaticResource FeedbackTypeToImageSourceConverter}}"
 VerticalAlignment="Top" Margin="0,4,0,0" />
 <TextBlock Grid.Column="1" Text="{Binding Message}"
 MinHeight="22" TextWrapping="Wrap" Margin="5,2,5,0"
 VerticalAlignment="Top" FontSize="14" />
 <Button Grid.Column="2" ToolTip="Removes this message from the
 list" VerticalAlignment="Top" PreviewMouseLeftButtonDown=
 "DeleteButton_PreviewMouseLeftButtonDown">
 <Image Source="pack://application:,,,/
 CompanyName.ApplicationName;component/Images/Delete_16.png"
 Style="{StaticResource SmallImageInButtonStyle}" />
 </Button>
 </Grid>
 </DataTemplate>
 <DropShadowEffect x:Key="Shadow" Color="Black" ShadowDepth="6"
 Direction="270" Opacity="0.4" />
 </UserControl.Resources>
 <Border BorderBrush="{StaticResource TransparentBlack}"
 Background="White" Padding="3" BorderThickness="1,0,1,1"
 CornerRadius="0,0,5,5" Visibility="{Binding HasFeedback,
 Converter={StaticResource BoolToVisibilityConverter},
 RelativeSource={RelativeSource Mode=FindAncestor,
 AncestorType={x:Type Controls:FeedbackControl}}}"
 Effect="{StaticResource Shadow}">
 <ListBox MaxHeight="89" ItemsSource="{Binding Feedback,
 RelativeSource={RelativeSource Mode=FindAncestor,
 AncestorType={x:Type Controls:FeedbackControl}}}"
 ItemTemplate="{StaticResource FeedbackTemplate}"
 ItemsPanel="{StaticResource AnimatedPanel}"
 ScrollViewer.HorizontalScrollBarVisibility="Disabled"
 ScrollViewer.VerticalScrollBarVisibility="Auto" BorderThickness="0"
 HorizontalContentAlignment="Stretch" />
 </Border>
</UserControl>

Completing that Great User Experience Chapter 10

[484]

We start by adding a number of XAML namespace prefixes for some of our application
projects. Using the Converters prefix, we add instances of the
FeedbackTypeToImageSourceConverter and BoolToVisibilityConverter classes
that we saw earlier into the UserControl.Resources section. We also reuse our
AnimatedStackPanel class from Chapter 7, Mastering Practical Animations.

Next, we see the SmallImageInButtonStyle style, which is based on the
ImageInButtonStyle style that we also saw earlier, and adds some sizing properties.
After that, we see the FeedbackStyle style that defines what each feedback message will
look like in our feedback control.

Each Feedback object will be rendered in three columns: the first contains an image that
specifies the type of feedback, using the FeedbackTypeToImageSourceConverter class
that we saw earlier; the second displays the message with a TextWrapping value of Wrap;
the third holds a button with an image, using our SmallImageInButtonStyle style,
which users can use to remove the message.

Note that, as this is purely a UI control with no business logic in, we are able to use the
code behind the file, even when using MVVM. As such, we attach event handlers for the
MouseEnter and MouseLeave events to the Grid panel containing each Feedback object,
and another for the PreviewMouseLeftButtonDown event to the delete button. The final
resource that we have here is a DropShadowEffect instance that defines a small shadow
effect.

For the feedback control, we define a Border element that uses a semi-transparent border
brush and has a BorderThickness value of 1,0,1,1 and a CornerRadius value of
0,0,5,5. These four values work like the Margin property and enable us to set different
values for each of the four sides, or corners in the case of the CornerRadius property. In
this way, we can display a rectangle that is only bordered on three sides, with rounded
corners on two.

Note that the Visibility property on this border is determined by the HasFeedback
property of the FeedbackControl class via an instance of our
BoolToVisibilityConverter class. Therefore, when there are no feedback objects to
display, the border will be hidden. Also note that our Shadow resource is applied to the
border Effect property.

Inside the border, we declare a ListBox control, with its ItemsSource property set to the
Feedback property of the FeedbackControl class and its height restricted to a maximum
of three feedback items, after which vertical scrollbars will be shown. Its ItemTemplate
property is set to the FeedbackTemplate that we defined in the resources section.

Completing that Great User Experience Chapter 10

[485]

Its ItemsPanel property is set to the AnimatedPanel resource that we declared to
animate the entrance and exit of the feedback items. Next, we remove the default border of
the ListBox by setting the BorderThickness property to 0 and stretch the autogenerated
ListBoxItem objects to fit the width of the ListBox control by setting the
HorizontalContentAlignment property to Stretch.

Let's now see the code behind our feedback control:

using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Threading;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.DataModels.Collections;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.Views.Controls
{
 public partial class FeedbackControl : UserControl
 {
 private static List<DispatcherTimer> timers =
 new List<DispatcherTimer>();

 public FeedbackControl()
 {
 InitializeComponent();
 }

 public static readonly DependencyProperty FeedbackProperty =
 DependencyProperty.Register(nameof(Feedback),
 typeof(FeedbackCollection), typeof(FeedbackControl),
 new UIPropertyMetadata(new FeedbackCollection(),
 (d, e) => ((FeedbackCollection)e.NewValue).CollectionChanged +=
 ((FeedbackControl)d).Feedback_CollectionChanged));

 public FeedbackCollection Feedback
 {
 get { return (FeedbackCollection)GetValue(FeedbackProperty); }
 set { SetValue(FeedbackProperty, value); }
 }

 public static readonly DependencyProperty HasFeedbackProperty =
 DependencyProperty.Register(nameof(HasFeedback), typeof(bool),

Completing that Great User Experience Chapter 10

[486]

 typeof(FeedbackControl), new PropertyMetadata(true));

 public bool HasFeedback
 {
 get { return (bool)GetValue(HasFeedbackProperty); }
 set { SetValue(HasFeedbackProperty, value); }
 }

 private void Feedback_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
 {
 if ((e.OldItems == null || e.OldItems.Count == 0) &&
 e.NewItems != null && e.NewItems.Count > 0)
 {
 e.NewItems.OfType<Feedback>().Where(f => !f.IsPermanent).
 ForEach(f => InitializeTimer(f));
 }
 HasFeedback = Feedback.Any();
 }

 private void InitializeTimer(Feedback feedback)
 {
 DispatcherTimer timer = new DispatcherTimer();
 timer.Interval = feedback.Duration;
 timer.Tick += Timer_Tick;
 timer.Tag = new Tuple<Feedback, DateTime>(feedback, DateTime.Now);
 timer.Start();
 timers.Add(timer);
 }

 private void Timer_Tick(object sender, EventArgs e)
 {
 DispatcherTimer timer = (DispatcherTimer)sender;
 timer.Stop();
 timer.Tick -= Timer_Tick;
 timers.Remove(timer);
 Feedback feedback = ((Tuple<Feedback, DateTime>)timer.Tag).Item1;
 Feedback.Remove(feedback);
 }

 private void DeleteButton_PreviewMouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 Button deleteButton = (Button)sender;
 Feedback feedback = (Feedback)deleteButton.DataContext;
 Feedback.Remove(feedback);
 }

Completing that Great User Experience Chapter 10

[487]

 private void Border_MouseEnter(object sender, MouseEventArgs e)
 {
 foreach (DispatcherTimer timer in timers)
 {
 timer.Stop();
 Tuple<Feedback, DateTime> tag =
 (Tuple<Feedback, DateTime>)timer.Tag;
 tag.Item1.Duration = timer.Interval = tag.Item1.Duration.
 Subtract(DateTime.Now.Subtract(tag.Item2));
 }
 }

 private void Border_MouseLeave(object sender, MouseEventArgs e)
 {
 foreach (DispatcherTimer timer in timers)
 {
 Feedback feedback = ((Tuple<Feedback, DateTime>)timer.Tag).Item1;
 timer.Tag = new Tuple<Feedback, DateTime>(feedback, DateTime.Now);
 timer.Start();
 }
 }
 }
}

We start by declaring the collection of DispatcherTimer instances that will be responsible
for timing when each feedback object should be removed from the collection, according to
its Duration property. We then see the declaration of the Feedback and HasFeedback
Dependency Properties, along with their CLR wrappers and the Feedback property's
CollectionChanged handler.

In the attached Feedback_CollectionChanged handler method, we call the
InitializeTimer method, passing in each new non-permanent feedback item. Note that
we need to use the OfType LINQ Extension Method to cast each item in the NewItems
property of the NotifyCollectionChangedEventArgs class from type object to
Feedback. Before returning control to the caller, we set the HasFeedback property
accordingly.

In the InitializeTimer method, we initialize a DispatcherTimer instance and set its
interval to the value from the Duration property of the feedback input parameter. We
then attach the Timer_Tick event handler, add the current time and the feedback object
into the Tag property of the timer for later use, start the timer, and add it into the timers
collection.

Completing that Great User Experience Chapter 10

[488]

In the Timer_Tick method, we access the timer from the sender input parameter, and the
Feedback instance from its Tag property. The feedback item is then removed from the
Feedback collection, the timer is stopped and removed from the timers collection, and the
Tick event handler is detached.

In the DeleteButton_PreviewMouseLeftButtonDown method, we first cast the delete
button from the sender input parameter. We then cast the Feedback object from the
button's DataContext property and remove it from the Feedback collection.

In the Border_MouseEnter method, we iterate through the timers collection and stop
each timer. The interval of each timer and duration of each associated Feedback object is
then set to the remaining time that they should be displayed for, in effect, pausing their
durations.

Finally, we see the Border_MouseLeave method, which re-initializes the Tag property of
each timer in the timers collection, with the same feedback item and the current date and
time, and restarts it when the user's mouse pointer leaves the feedback control.

This means that the length of time that temporary feedback messages are displayed can be
extended if the user moves their mouse pointer over the feedback control. This feature will
hold the feedback messages in the control for as long as the user keeps their mouse pointer
over the control, giving them ample time to read the messages. Let's now see what this
control looks like:

Completing that Great User Experience Chapter 10

[489]

If you have menu buttons at the top of your Views, then you could alternatively have the
feedback appear at the bottom of the application, or even sliding in from one of the sides.
Also note that the delete buttons have not been styled, so as to shorten this example, but
they should be styled in line with the other controls in a real application.

If you remember from Chapter 3, Writing Custom Application Frameworks, all of our View
Models will have access to our new FeedbackManager class through the
FeedbackManager property in our BaseViewModel class, and so we can replicate the
feedback in the preceding image from any View Model like this:

FeedbackManager.Add(new Feedback("Here's some information for you",
 FeedbackType.Information));
FeedbackManager.Add("Something was saved successfully", true);
FeedbackManager.Add("Something else went wrong", false);
FeedbackManager.Add("Something else went wrong too", false);

Let's now move on to discover how we can make our applications more responsive by
maximizing the utilization of the CPU.

Utilizing multiple threads
Traditionally, all applications were developed as single threaded applications. However,
when long running background processes were running, the application UI would freeze
and become unresponsive, because the single thread was busy elsewhere. This problem and
other performance bottlenecks led to the current era of asynchronous programming and
multi threaded applications.

In days gone by, creating multi-threaded applications was a complicated matter. With each
successive version of the .NET Framework, Microsoft has striven to make this task easier.
Originally, we only had the Thread class and then the BackgroundWorker class in .NET
2.0, but in .NET 4.0 they introduced the Task class, and in .NET 4.5 they introduced the
async and await keywords.

In this section, we will explore the latter methods of multithreading and add functionality
to our application framework that will enable us to perform our data retrieval and update
actions asynchronously. Let's start by looking at the async and await keywords first.

Completing that Great User Experience Chapter 10

[490]

Discovering the Async and Await keywords
Along with these new keywords, Microsoft also added a plethora of methods across the
.NET Framework that end with the suffix Async. As the suffix hints, these methods are all
asynchronous and they are used in conjunction with the new keywords. Let's start with the
basic rules.

First of all, in order to use the await keyword in a method, the method signature must be
declared with the async keyword. The async keyword enables us to use the await
keyword in the method without error and is responsible for returning just the T generic
type parameter from asynchronous methods whose signatures declare a return type
of Task<T>. A method that is modified with the async keyword is known as an async
method.

Async methods actually execute in a synchronous manner, until they reach an await
expression. If there is no await keyword in the method, then the whole method will run
synchronously and the compiler will output a warning.

While a portion of async methods run asynchronously, they don't in fact run on their own
threads. No additional threads are created using the async and await keywords. Instead,
they give the appearance of multithreading by using the current synchronization context,
but only when the method is active and not when it is paused, while running an await
expression.

When execution reaches an await keyword, the method is suspended until the awaited
task has completed asynchronously. During this time, execution returns to the method
caller. When the asynchronous action is complete, program execution returns to the method
and the remainder of the code in it is run synchronously.

Async methods are required to have a particular signature. They all need to use the async
modifier keyword, and in addition to this the names of async methods should end with the
Async suffix to clearly signify that they are asynchronous methods. Another requirement of
declaring async methods is that they cannot contain any ref or out input parameters.

The final requirement is that async methods can only use one of three return types: Task,
the generic Task<TResult>, or void. Note that the generic type TResult parameter is the
same as and can be replaced with T, but Microsoft refers to it as TResult simply because it
specifies a return type.

Completing that Great User Experience Chapter 10

[491]

All async methods that return some meaningful result will use type Task<TResult>,
where the actual type of the return value will be specified by the TResult generic type
parameter. Therefore, if we want to return a string from our async method, we declare
that our async method returns a parameter of type Task<string>. Let's see an example of
this in action:

using System;
using System.IO;
using System.Threading.Tasks;

...

public async Task<string> GetTextFileContentsAsync(string filePath)
{
 string fileContents = string.Empty;
 try
 {
 using (StreamReader streamReader = File.OpenText(filePath))
 {
 fileContents = await streamReader.ReadToEndAsync();
 }
 }
 catch { /*Log error*/ }
 return fileContents;
}

Here we have a simple async method that returns a string that represents the contents of
the text file specified by the filePath input parameter. Note that the actual return type of
the method is in fact Task<string>. In it, we first initialize the fileContents variable
and then attempt to create a StreamReader instance from the File.OpenText method
within the using statement.

Inside the using statement, we attempt to populate the fileContents variable by
awaiting the result of the ReadToEndAsync method of the StreamReader class. Up until
this point, the method will run synchronously. The ReadToEndAsync method will be
called, and then control will immediately return to the caller of our async method.

When the return value of the ReadToEndAsync method is ready, execution returns to our
async method and continues where it left off. In our example, there is nothing else to do but
return the result string, although async methods can contain any number of lines after the
await keyword, or even multiple await keywords. Note that in a real-world application,
we would log any exceptions that might be thrown from this method.

Completing that Great User Experience Chapter 10

[492]

If our async method just performs some function asynchronously, but does not return
anything, then we use a return type of Task. That is, the task-based async method will
return a Task object that enables it to be used with the await keyword, but the actual
method will not return anything to the caller of that method. Let's see an example of this:

using System.Text;

...

public async Task SetTextFileContentsAsync(string filePath,
 string contents)
{
 try
 {
 byte[] encodedFileContents = Encoding.Unicode.GetBytes(contents);
 using (FileStream fileStream = new FileStream(filePath,
 FileMode.OpenOrCreate, FileAccess.Write, FileShare.None, 4096, true))
 {
 await fileStream.WriteAsync(encodedFileContents, 0,
 encodedFileContents.Length);
 }
 }
 catch { /*Log error*/ }
}

In the SetTextFileContentsAsync method, we first need to convert our input string to a
byte array. For this reason, we now need to add a using directive for the System.Text
namespace in addition to the three originally specified. Note that in this particular example,
we are using Unicode encoding, but you are free to use any other encoding value here.

After using the GetBytes method to obtain a byte array from the contents input
parameter, we initialize a new FileStream object within another using statement. Apart
from the bool useAsync input parameter, the remaining parameters used in the
FileStream constructor in this example are unimportant, and you are free to replace them
with values that suit your requirements better.

Inside the using statement, we see the await keyword used with the WriteAsync
method. Up until this point, this method will run synchronously, and on this line it will
start execution of the WriteAsync method and then return control to the method caller.

As execution leaves the using statement, the FileStream instance will be closed and
disposed of. As this method has nothing to return, the return type of the async method is
Task, which enables it to be awaited by the calling code. Again, we would typically log any
exceptions that might be thrown from this method, but this is omitted here for brevity.

Completing that Great User Experience Chapter 10

[493]

Most of us will never use the third return type option of void when using MVVM, because
it is primarily used in event handling methods. Note that async methods that return void
cannot be awaited and that calling code cannot catch exceptions thrown from such async
methods.

One of the most commonly asked questions regarding async methods is "How can I create
an async method from a synchronous method?" Luckily, there is a very simple solution to
this using the Task.Run method, so let's take a quick look at it now:

await Task.Run(() => SynchronousMethod(parameter1, parameter2, etc));

Here we use a Lambda expression to specify the synchronous method to run in an
asynchronous context. That's all that we have to do to run a synchronous method
asynchronously. However, what about the opposite requirement? Let's now see how we
can run an asynchronous method synchronously. Again, the Task class provides us with a
solution:

Task task = SetFileContentsAsync(filePath, contents);
task.RunSynchronously();

As we saw at the end of Chapter 1, A Smarter Way of Working with WPF, in order to run an
asynchronous method synchronously, we first need to instantiate a Task instance from our
asynchronous method. Then, all we have to do is call the RunSynchronously method on
that instance, and it will run synchronously.

Building asynchrony into our framework
Using the Task class, we can add functionality into our application framework that will
enable us to call any data access method asynchronously. Furthermore, it will also enable
us to run our data operations asynchronously when the application is running, and
synchronously while testing. In order to achieve this, we will need to implement several
parts, that go together to provide this functionality.

Let's look at the first part that will wrap each data operation and hold the result value, if
applicable, along with any feedback messages or error details:

using System;
using System.Data.SqlClient;
using CompanyName.ApplicationName.DataModels.Enums;
using CompanyName.ApplicationName.Extensions;

namespace CompanyName.ApplicationName.DataModels
{

Completing that Great User Experience Chapter 10

[494]

 public abstract class DataOperationResult<T>
 {
 public DataOperationResult(string successText)
 {
 Description = string.IsNullOrEmpty(successText) ?
 "The data operation was successful" : successText;
 }

 public DataOperationResult(Exception exception, string errorText)
 {
 Exception = exception;
 if (Exception is SqlException)
 {
 if (exception.Message.Contains("The server was not found"))
 Error = DataOperationError.DatabaseConnectionError;
 else if (exception.Message.Contains("constraint"))
 Error = DataOperationError.DatabaseConstraintError;
 // else Description = Exception.Message;
 }
 if (Error != DataOperationError.None)
 Description = Error.GetDescription();
 else
 {
 Error = DataOperationError.UndeterminedDataOperationError;
 Description = string.IsNullOrEmpty(errorText) ?
 Error.GetDescription() : errorText;
 }
 }

 public DataOperationResult(Exception exception) :
 this(exception, string.Empty) { }

 public string Description { get; set; }

 public DataOperationError Error { get; set; } =
 DataOperationError.None;

 public Exception Exception { get; set; } = null;

 public bool IsSuccess =>
 Error == DataOperationError.None && Exception == null;
 }
}

Completing that Great User Experience Chapter 10

[495]

In our abstract DataOperationResult class, we have a number of properties and
constructor overloads. The first constructor is used for a successful set data operation and
merely takes the successText input parameter, which is used to populate the
Description property, unless it is null or empty, in which case a default successful
operation message is used instead.

The second constructor is to be used when an exception has been thrown during the data
operation, and takes the exception and an error message as input parameters. In it, we first
set the Exception property to the exception specified by the exception input parameter,
and then we have a chance to catch common exceptions and replace the error messages
with custom messages in plain English.

Although we are only checking for exceptions of type SqlException in this example, we
could easily extend this to capture other well-known or expected exceptions, and replace
their messages with custom messages using laymen terms, by adding the further
else...if conditions.

Note that the Error property of enumeration type DataOperationError is used here to
set and output the predefined error messages, and we'll see that in a moment. If the
exception is not one that we were expecting, then we could choose to output the actual
exception message, although that would mean little to the users and could be deemed
confusing or even worrying.

Instead, we could log the exception in the database and output the message from the
errorText input parameter. We check whether the Error property has been set, and if it
has, we call our GetDescription Extension Method to retrieve the message that relates to
the set enumeration member, and set it to the Description property.

Otherwise, we set the Error property to the UndeterminedDataOperationError
member and the Description property to the value of the errorText input parameter if
it is not null or empty, or the text associated with the selected enumeration member if it is.
The third constructor is also used when an exception has been thrown, but when there is no
predefined feedback message.

After the constructors, we see the properties of the DataOperationResult class, most of
which are self-explanatory. Of particular note is the IsSuccess property, which can be
used by the calling code to determine what to do with the result. Let's now take a look at
the DataOperationError enumeration class that is used to hold the error descriptions:

using System.ComponentModel;

namespace CompanyName.ApplicationName.DataModels.Enums
{

Completing that Great User Experience Chapter 10

[496]

 public enum DataOperationError
 {
 [Description("")]
 None = 0,
 [Description("A database constraint has not been adhered to, so this
 operation cannot be completed")]
 DatabaseConstraintError = 9995,
 [Description("There was an undetermined data operation error")]
 UndeterminedDataOperationError = 9997,
 [Description("There was a problem connecting to the database")]
 DatabaseConnectionError = 9998,
 }
}

As you can see, we utilize the DescriptionAttribute class to relate a humanized error
message with each enumeration member. We can use the GetDescription Extension
Method that we saw earlier to access the text values from the attributes.

Each enumeration member is assigned a number, and this could work well with the SQL
Server error numbers if you were using SQL stored procedures or queries directly. For
example, we could cast the SQL error code to the particular enumeration member to get the
custom message for each error. Let's now take a look at the two classes that extend the
DataOperationResult class:

using System;

namespace CompanyName.ApplicationName.DataModels
{
 public class GetDataOperationResult<T> : DataOperationResult<T>
 {
 public GetDataOperationResult(Exception exception, string errorText) :
 base(exception, errorText)
 {
 ReturnValue = default(T);
 }

 public GetDataOperationResult(Exception exception) :
 this(exception, string.Empty) { }

 public GetDataOperationResult(T returnValue, string successText) :
 base(successText)
 {
 ReturnValue = returnValue;
 }

 public GetDataOperationResult(T returnValue) :
 this(returnValue, string.Empty) { }

Completing that Great User Experience Chapter 10

[497]

 public T ReturnValue { get; private set; }
 }
}

We start with the GetDataOperationResult class, which is used to return the result of
get data operations, or the exception details if an error occurred. It adds a ReturnValue
property of the generic type T to hold the return value of the data operation. Apart from
this single member, it simply adds a number of constructors that each call the base class
constructors.

The first is used when an exception has been thrown and sets the ReturnValue property to
its default value, rather than leaving it as null. The second constructor is also used when
an exception has been thrown, but when there is no predefined error message.

The third constructor is used for a successful data operation and sets the ReturnValue
property to the returned value. The fourth is also used for a successful data operation, but
when there is no predefined success message. It calls the third constructor, passing the
returned value and an empty string for the success message. Let's now see the other class
that extends the DataOperationResult class:

using System;

namespace CompanyName.ApplicationName.DataModels
{
 public class SetDataOperationResult : DataOperationResult<bool>
 {
 public SetDataOperationResult(Exception exception, string errorText) :
 base(exception, errorText) { }

 public SetDataOperationResult(string successText) :
 base(successText) { }
 }
}

The SetDataOperationResult class is used for set operations and so has no return value.
Like the GetDataOperationResult class, its two constructors call the relevant base class
constructors. The first is used when an exception has been thrown, and the second is used
for a successful data operation and accepts an input parameter for the operation's success
message.

Completing that Great User Experience Chapter 10

[498]

We'll need to add a new method into our FeedbackManager class to enable us to add the
feedback messages from our GetDataOperationResult and SetDataOperationResult
classes directly. We'll also include a parameter that allows us to override whether each
message will be displayed for its set duration, or until the user closes it manually. Let's take
a look at that now:

public void Add<T>(DataOperationResult<T> result, bool isPermanent)
{
 Add(new Feedback(result.Description, result.IsSuccess, isPermanent));
}

Note that we use the DataOperationResult base class as the input parameter here, so
that either of our derived classes can be used with it. This method simply initializes a
Feedback object from the Description and IsSuccess properties of the
DataOperationResult class and passes it to the Add method that actually adds it to the
Feedback collection.

If we're going to be making asynchronous calls to the UI feedback control, then we'll also
need to ensure that they are made on the UI thread, so as to avoid the common calling
thread cannot access this object because a different thread owns it

exception.

To enable this, we need to add a reference to the UiThreadManager class, which we
discussed earlier, into our FeedbackManager class, although here we add a reference to the
IUiThreadManager interface instead to enable us to use a different implementation while
testing:

using System;
using CompanyName.ApplicationName.Managers.Interfaces;

...

private IUiThreadManager uiThreadManager = null;

...

public IUiThreadManager UiThreadManager
{
 get { return uiThreadManager; }
 set { uiThreadManager = value; }
}

...

public void Add(Feedback feedback)

Completing that Great User Experience Chapter 10

[499]

{
 UiThreadManager.RunOnUiThread((Action)delegate
 {
 Feedback.Add(feedback);
 });
}

Using the IUiThreadManager interface, we simply need to wrap our single call to add
feedback to the FeedbackManager.Feedback collection property with the
RunOnUiThread method to run it on the UI thread. However, our uiThreadManager field
needs to be initialized before any feedback is displayed, and we can do that from the first
use of the BaseViewModel class:

public BaseViewModel()
{
 if (FeedbackManager.UiThreadManager == null)
 FeedbackManager.UiThreadManager = UiThreadManager;
}

...

public IUiThreadManager UiThreadManager
{
 get { return DependencyManager.Instance.Resolve<IUiThreadManager>(); }
}

The first time that any View Model is instantiated, this base class constructor will be called
and the instance of the IUiThreadManager interface in the FeedbackManager class will be
initialized. Of course, in order to correctly resolve our instance of the IUiThreadManager
interface at runtime, we'll first need to register it in the App.xaml.cs file, along with the
other registrations.

DependencyManager.Instance.Register<IUiThreadManager, UiThreadManager>();

Let's take a look at this interface and the classes that implement it now:

using System;
using System.Threading.Tasks;
using System.Windows.Threading;

namespace CompanyName.ApplicationName.Managers.Interfaces
{
 public interface IUiThreadManager
 {
 object RunOnUiThread(Delegate method);

 Task RunAsynchronously(Action method);

Completing that Great User Experience Chapter 10

[500]

 Task<TResult> RunAsynchronously<TResult>(Func<TResult> method);
 }
}

The IUiThreadManager interface is a very simple affair and declares just three methods.
The RunOnUiThread method is used to run code on the UI thread; the first
RunAsynchronously method is used to run code asynchronously, and the second
RunAsynchronously method is used to run methods that return something
asynchronously. Let's now see the classes that implement it:

using System;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Threading;
using CompanyName.ApplicationName.Managers.Interfaces;

namespace CompanyName.ApplicationName.Managers
{
 public class UiThreadManager : IUiThreadManager
 {
 public object RunOnUiThread(Delegate method)
 {
 return Application.Current.Dispatcher.Invoke(
 DispatcherPriority.Normal, method);
 }

 public Task RunAsynchronously(Action method)
 {
 return Task.Run(method);
 }

 public Task<TResult> RunAsynchronously<TResult>(Func<TResult> method)
 {
 return Task.Run(method);
 }
 }
}

In the UiThreadManager class, the RunOnUiThread method calls the Invoke method on
the Application.Current.Dispatcher object to ensure that the method that is passed to
it is queued to run on the UI thread.

Completing that Great User Experience Chapter 10

[501]

Basically, a dispatcher is responsible for maintaining the queue of work items for a
particular thread, and each thread will have its own dispatcher. The
Application.Current property returns the Application object for the current
AppDomain object, and its Dispatcher property returns the dispatcher of the thread that
was running when the application started – the UI thread.

As was seen earlier, the RunAsynchronously methods simply pass the methods specified
by the method input parameters to the Task.Run method. We also saw an example of
mocking the RunAsynchronously method in Chapter 1, A Smarter Way of Working With
WPF, but now let's see the whole MockUiThreadManager class that we could use while
testing our application:

using System;
using System.Threading.Tasks;
using System.Windows.Threading;
using CompanyName.ApplicationName.Managers.Interfaces;

namespace Test.CompanyName.ApplicationName.Mocks.Managers
{
 public class MockUiThreadManager : IUiThreadManager
 {
 public object RunOnUiThread(Delegate method)
 {
 return method.DynamicInvoke();
 }

 public Task RunAsynchronously(Action method)
 {
 Task task = new Task(method);
 task.RunSynchronously();
 return task;
 }

 public Task<TResult> RunAsynchronously<TResult>(Func<TResult> method)
 {
 Task<TResult> task = new Task<TResult>(method);
 task.RunSynchronously();
 return task;
 }
 }
}

Completing that Great User Experience Chapter 10

[502]

In the RunOnUiThread method, we simply call the DynamicInvoke method of the
Delegate class to run the method specified by the method input parameter. As we saw
earlier, the RunAsynchronously methods use the RunSynchronously method of the Task
class to run the methods specified by the method input parameters synchronously to avoid
timing problems during testing.

In them, we first create a new Task object with the method specified by the method input
parameter, then call the RunSynchronously method on it, and finally return the task.
When called using the await keyword, this will actually return the result of the method
instead.

Let's now see, perhaps the most important part of this functionality, where the
IUiThreadManager interface is used, the DataOperationManager class:

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using System.Windows.Threading;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.Managers.Interfaces;

namespace CompanyName.ApplicationName.Managers
{
 public class DataOperationManager
 {
 private const int maximumRetryCount = 2;
 private IUiThreadManager uiThreadManager;

 public DataOperationManager(IUiThreadManager uiThreadManager)
 {
 UiThreadManager = uiThreadManager;
 }
 private IUiThreadManager UiThreadManager
 {
 get { return uiThreadManager.Instance; }
 set { uiThreadManager = value; }
 }
 private FeedbackManager FeedbackManager
 {
 get { return FeedbackManager.Instance; }
 }

 public GetDataOperationResult<TResult> TryGet<TResult>(
 Func<TResult> method, string successText, string errorText,
 bool isMessageSupressed)
 {

Completing that Great User Experience Chapter 10

[503]

 Debug.Assert(method != null, "The method input parameter of the
 DataOperationManager.TryGet<TResult>() method must not be null.");
 for (int index = 0; index < maximumRetryCount; index++)
 {
 try
 {
 TResult result = method();
 return WithFeedback(
 new GetDataOperationResult<TResult>(result, successText),
 isMessageSupressed);
 }
 catch (Exception exception)
 {
 if (index == maximumRetryCount - 1)
 {
 return WithFeedback(
 new GetDataOperationResult<TResult>(exception, errorText),
 isMessageSupressed);
 }
 Task.Delay(TimeSpan.FromMilliseconds(300));
 }
 }
 return WithFeedback(
 new GetDataOperationResult<TResult>(default(TResult), successText),
 isMessageSupressed);
 }

 private GetDataOperationResult<TResult>WithFeedback<TResult>(
 GetDataOperationResult<TResult> dataOperationResult, bool
 isMessageSupressed)
 {
 if (isMessageSupressed && dataOperationResult.IsSuccess)
 return dataOperationResult;
 FeedbackManager.Add(dataOperationResult, false);
 return dataOperationResult;
 }
 public Task<GetDataOperationResult<TResult>> TryGetAsync<TResult>(
 Func<TResult> method, string successText, string errorText,
 bool isMessageSupressed)
 {
 return UiThreadManager.RunAsynchronously(() =>
 TryGet(method, successText, errorText, isMessageSupressed));
 }

 public SetDataOperationResult TrySet(Action method,
 string successText, string errorText, bool isMessagePermanent,
 bool isMessageSupressed)
 {

Completing that Great User Experience Chapter 10

[504]

 Debug.Assert(method != null, "The method input parameter of the
 DataOperationManager.TrySet<TResult>() method must not be null.");
 for (int index = 0; index < maximumRetryCount; index++)
 {
 try
 {
 method();
 return WithFeedback(new SetDataOperationResult(successText),
 isMessagePermanent, isMessageSupressed);
 }
 catch (Exception exception)
 {
 if (index == maximumRetryCount - 1)
 {
 return WithFeedback(new SetDataOperationResult(exception,
 errorText), isMessagePermanent, isMessageSupressed);
 }
 Task.Delay(TimeSpan.FromMilliseconds(300));
 }
 }
 return WithFeedback(new SetDataOperationResult(successText),
 isMessagePermanent, isMessageSupressed);
 }

 private SetDataOperationResult WithFeedback(
 SetDataOperationResult dataOperationResult,
 bool isMessagePermanent, bool isMessageSupressed)
 {
 if (isMessageSupressed && dataOperationResult.IsSuccess)
 return dataOperationResult;
 FeedbackManager.Add(dataOperationResult, isMessagePermanent);
 return dataOperationResult;
 }

 public Task<SetDataOperationResult> TrySetAsync(Action method)
 {
 return TrySetAsync(method, string.Empty, string.Empty);
 }

 public Task<SetDataOperationResult> TrySetAsync(Action method,
 string successText, string errorText)
 {
 return TrySetAsync(method, successText, errorText, false, false);
 }

 public Task<SetDataOperationResult> TrySetAsync(Action method,
 string successText, string errorText, bool isMessagePermanent,
 bool isMessageSupressed)

Completing that Great User Experience Chapter 10

[505]

 {
 return UiThreadManager.RunAsynchronously(() => TrySet(method,
 successText, errorText, isMessagePermanent, isMessageSupressed));
 }
 }
}

The DataOperationManager class starts with a couple of private fields, which represent
the maximum number of attempts to retry each data operation in case there is a problem,
and the instance of the IUiThreadManager interface to use to run our functions
asynchronously when running the application.

The constructor enables us to inject the IUiThreadManager dependency into the class and
sets it to the private UiThreadManager property, which can only be accessed from within
the class. Likewise, the FeedbackManager property is also private and enables us to pass
feedback messages to the manager class to display them in the UI.

Next, we see the generic TryGet<TResult> method that returns an object of
the type GetDataOperationResult<TResult>. More specifically, it returns a generic
object of the type TResult wrapped in one of our GetDataOperationResult objects. It
first asserts that the method input parameter is not null, as this class is based around the
required parameter.

In this method, we create a loop, with the number of its iterations determined by the value
of the maximumRetryCount field, and inside the loop we try to run the function specified
by the method input parameter. If the data operation is successful, we initialize a
GetDataOperationResult object, passing the return value and success feedback message,
and return it via the WithFeedback method.

If an error occurs and the maximum number of attempts have not yet been reached, then
we use the asynchronous Task.Delay method to wait before attempting to run the method
again. If the maximum number of errors has been reached, then the exception and error
feedback message are wrapped in a GetDataOperationResult object and returned via
the WithFeedback method.

One improvement that we could implement here would be to increase this delay time each
time we retry the data operation. We could implement a function that returns an
exponentially increasing number, based on the maximumRetryCount field, representing the
millisecond value that will be passed to the Task.Delay method. This would be more
likely to handle short network drop outs better.

Completing that Great User Experience Chapter 10

[506]

The WithFeedback method enables developers to suppress successful feedback messages,
as they might not always need the users to receive feedback. For example, we may not need
to inform them that their data objects were fetched from the database successfully, if they
have been, or are soon to be, displayed on the screen.

Therefore, if the data operation was successful and the isMessageSupressed input
parameter is true, the data operation result is returned directly, without feedback.
Otherwise, the dataOperationResult input parameter object is passed to the
FeedbackManager class to display the associated message, using the new methods that we
added earlier.

Next, we see the asynchronous TryGetAsync method that simply calls the TryGet method
via the RunAsynchronously method of the UiThreadManager class. After that, we have
the TrySet method that is responsible for running all set data operations, and returns an
object of the type SetDataOperationResult.

This method is very similar to the TryGet method, except that it works for set data
operations. Similarly, it first asserts that the method input parameter is not null and then
runs the remainder of the code within a for loop. This again enables our retry capability,
and is limited by the value of the maximumRetryCount field.

In the method, we try to run the function specified by the method input parameter, and if
the data operation is successful, we initialize a SetDataOperationResult object, passing
just the success feedback message and return it via the WithFeedback method.

If an error occurs and the number of attempts specified by the maximumRetryCount field
has not yet been reached, then we use the Task.Delay method to wait before attempting to
run the method again. If the maximum number of errors has been reached, then the
exception and error feedback message are wrapped in a SetDataOperationResult object
and returned via the WithFeedback method.

The WithFeedback method used with the SetDataOperationResult objects works
exactly the same as the earlier one that works with the generic GetDataOperationResult
objects. Finally, we have some overloaded TrySetAsync methods that end up calling the
TrySet method asynchronously via the RunAsynchronously method of the
UiThreadManager class.

One point to note here is that, currently, this class is located in the Managers project. If we
were at all likely to need to swap out our data access technology, then we might prefer to
move this class to the data access project for ease of removal. As it stands, we don't have
that requirement, and so it is fine where it is.

Completing that Great User Experience Chapter 10

[507]

We can make use of this DataOperationManager class in the DataController class that
we saw earlier, with just a few changes. We can also replace its previous
SetAuditCreateFields and SetAuditUpdateFields methods with some new methods
that also update our data models that implement the ISynchronizableDataModel
interface. Let's take a look at the new code in there:

using System;
using System.Threading.Tasks;
using CompanyName.ApplicationName.DataModels;
using CompanyName.ApplicationName.DataModels.Collections;
using CompanyName.ApplicationName.DataModels.Enums;
using CompanyName.ApplicationName.DataModels.Interfaces;
using CompanyName.ApplicationName.Managers;
using CompanyName.ApplicationName.Models.Interfaces;

namespace CompanyName.ApplicationName.Models.DataControllers
{
 public class DataController
 {
 ...

 private DataOperationManager dataOperationManager;

 public DataController(IDataProvider dataProvider,
 DataOperationManager dataOperationManager, User currentUser)
 {
 ...
 DataOperationManager = dataOperationManager;
 CurrentUser = currentUser.Clone();
 }

 protected DataOperationManager DataOperationManager
 {
 get { return dataOperationManager; }
 private set { dataOperationManager = value; }
 }

 ...

 public Task<SetDataOperationResult> AddProductAsync(Product product)
 {
 return DataOperationManager.TrySetAsync(() =>
 DataProvider.AddProduct(InitializeDataModel(product)),
 $"{product.Name} was added to the data source successfully", $"A
 problem occurred and {product.Name} was not added to the data
 source.");
 }

Completing that Great User Experience Chapter 10

[508]

 public Task<SetDataOperationResult> DeleteProductAsync(
 Product product)
 {
 return DataOperationManager.TrySetAsync(() =>
 DataProvider.DeleteProduct(DeleteDataModel(product)),
 $"{product.Name} has been deleted from the data source
 successfully.", $"A problem occurred and {product.Name} was not
 deleted from the data source.", true, false);
 }

 public Task<GetDataOperationResult<Products>> GetProductsAsync()
 {
 return DataOperationManager.TryGetAsync(() =>
 DataProvider.GetProducts(), string.Empty, "A problem occurred when
 trying to retrieve the products.", true);
 }

 public SetDataOperationResult UpdateProduct(Product product)
 {
 return DataOperationManager.TrySet(() =>
 DataProvider.UpdateProduct(UpdateDataModel(product)),
 $"{product.Name} was saved in the data source successfully.", $"A
 problem occurred and {product.Name} was not updated in the data
 source.", false, false);
 }

 private T InitializeDataModel<T>(T dataModel)
 where T : class, IAuditable, new()
 {
 dataModel.Auditable = new Auditable(dataModel, CurrentUser);
 if (dataModel is ISynchronizableDataModel<T>)
 {
 ISynchronizableDataModel<T> synchronisableDataModel =
 (ISynchronizableDataModel<T>)dataModel;
 synchronisableDataModel.ObjectState = ObjectState.Active;
 }
 return dataModel;
 }

 private T DeleteDataModel<T>(T dataModel)
 where T : class, IAuditable, new()
 {
 dataModel.Auditable.UpdatedOn = DateTime.Now;
 dataModel.Auditable.UpdatedBy = CurrentUser;
 if (dataModel is ISynchronizableDataModel<T>)
 {
 ISynchronizableDataModel<T> synchronisableDataModel =
 (ISynchronizableDataModel<T>)dataModel;

Completing that Great User Experience Chapter 10

[509]

 synchronisableDataModel.ObjectState = ObjectState.Deleted;
 }
 return dataModel;
 }

 private T UpdateDataModel<T>(T dataModel)
 where T : class, IAuditable, new()
 {
 dataModel.Auditable.UpdatedOn = DateTime.Now;
 dataModel.Auditable.UpdatedBy = CurrentUser;
 return dataModel;
 }
 }
}

We start this class with the dataOperationManager field of
the type DataOperationManager. We don't need to use an interface here, as this class is
safe to be used during testing. However, it contains a member of
the type IUiThreadManager, and we need to be able to use different implementations of
this, depending on whether we're running or testing the application.

Therefore, we still need to inject the instance of the dataOperationManager field to use
through the constructor, so that its instance of the IUiThreadManager interface can be
resolved in the calling code. After the constructor, we see the private
DataOperationManager property that can only be set from within the class.

The first of the new methods is the AddProductAsync method, and as a set operation it
returns a Task of the type SetDataOperationResult. Internally, and like all async set
operations here, it calls the TrySetAsync method of the DataOperationManager class. It
passes the method to run asynchronously and the success and unspecified error text to be
displayed as user feedback.

Note that we pass the product input parameter to the InitializeDataModel method,
before passing it to the AddProduct method of the IDataProvider instance, to initialize
the base class Auditable property before it is stored in the database.

If the current instance also extends the ISynchronizableDataModel interface, then its
ObjectState property will be set to the Active member of the ObjectState
enumeration. This idea could easily be extended; if we had an IIdentifiable interface
with a single identification property, we could initialize that here as well.

Completing that Great User Experience Chapter 10

[510]

The DeleteProductAsync method also returns a Task of
the type SetDataOperationResult and calls the TrySetAsync method of the
DataOperationManager class, but it uses a different overload, which enables the feedback
message to be displayed permanently or until the user manually closes it. In this example, it
is used to ensure that the user is aware that the product was deleted.

In this method, we pass the product input parameter to the DeleteDataModel method,
before passing it to the DeleteProduct method of the IDataProvider instance. This sets
the UpdatedOn property of the Auditable class to the current date and time and the
UpdatedBy property to the currently logged-in user. If the current instance extends the
ISynchronizableDataModel interface, then its ObjectState property will also be set to
a state of Deleted.

The next new method is the GetProductsAsync method, which is a get operation and
returns a Task of the type GetDataOperationResult<Products>. Internally, and like all
async get operations, it calls the TryGetAsync method of the DataOperationManager
class. It passes the method to run asynchronously and the unspecified error text to be
displayed as user feedback.

Of particular note here is the bool parameter that it passes, which suppresses any
successful feedback message from being displayed. If there is an error, either the provided
error message or a more well-defined custom error message will be displayed, but as no
successful message is displayed, we simply pass an empty string through for that
parameter.

The final new data operation method is the UpdateProduct method, which is not
asynchronous, and returns a SetDataOperationResult directly. Instead of the
TrySetAsync method, it calls the TrySet method of the DataOperationManager class
and passes the method to run the success and error messages and two bool parameters to
signify that it should display the feedback normally.

Internally, it passes the product input parameter to the UpdateDataModel method, before
passing it to the UpdateProduct method of the IDataProvider instance. This sets the
UpdatedOn property of the Auditable class to the current date and time and the
UpdatedBy property to the currently logged-in user.

This gives an example of how we might build up our data operation methods,
predominantly using asynchronous access methods but not restricted to having to do so. Of
course, there are many ways of accessing data in an application, and you should
experiment with the way that suits you best. This way would suit larger scale applications
best, as there is a fair amount of overhead in creating this system.

Completing that Great User Experience Chapter 10

[511]

However, there's still one piece of the puzzle missing. Now that we've changed the
constructor of the DataController class, we'll also need to update our BaseViewModel
class, which exposes it, again:

protected DataController Model
{
 get { return new DataController(
 DependencyManager.Instance.Resolve<IDataProvider>(),
 new DataOperationManager(UiThreadManager),
 StateManager.CurrentUser); }
}

...

public IUiThreadManager UiThreadManager
{
 get { return DependencyManager.Instance.Resolve<IUiThreadManager>(); }
}

Now, the IDataProvider implementation is resolved by the DependencyManager
instance, along with the IUiThreadManager implementation that gets injected into the
DataOperationManager object. In addition to this, we pass the value of the
StateManager.CurrentUser property to the DataController class constructor to
instantiate it each time it is requested.

Now we have a system in place that can run our data operations either synchronously or
asynchronously and retry our data operations a specified number of times if they fail,
before finally reporting custom feedback messages to the user.

We can customize how long these messages remain visible before automatically
disappearing, or whether they will automatically disappear or not, or even whether they
are displayed in the first place or not. Even with these options, the system remains
lightweight and can be easily added to.

Completing that Great User Experience Chapter 10

[512]

Going the extra mile
Most privately developed applications are primarily functional, with little time and effort
spent on design concerns and even less on usability. How many times have we seen
applications that throw out a stack trace to the end user when an error occurs, or validation
messages that highlight errors with the camel case code names for fields, rather than the
labels used in the UI?

In a good application, the end user should never be presented with any code-based
terminology. If we were writing an English based application, we wouldn't output error
messages in Spanish, so why output them in C#? This can confuse the user and even alarm
them in some cases.

How many times have you used an application that has an awkward process flow to
perform each task that involves far more mouse clicks than is necessary? This section is
dedicated to avoiding these kinds of situations and suggests a number of ways of
improving the usability of our applications.

Producing in-application help
In an ideal world, we would all create applications that were so intuitive that we wouldn't
need to provide in-application help. However, with the complexity of some of today's
applications, this is not always possible. It is therefore often helpful to provide the end
users of our applications with some form of help that they can refer to when necessary.

There are a number of ways of doing this, with the first simply being to provide a link to a
separate help file from the application. If we have a PDF, or other type of file that contains
help for the users, we can add it to our solution in Visual Studio as a resource.

To do this, we can add a Resources folder into our solution and then select the Add New
Item option in the new folder's context menu. After navigating to the help file in the Add
New Item dialog and successfully adding it, we can view its properties by selecting it in the
Solution Explorer and pressing F4, or right clicking it and selecting Properties from the
context menu.

Once the properties are displayed, we can verify that the file has been added with a Build
Action of Content and a Copy to Output Directory value of Copy always or Copy if
newer, which ensures that our help file and its Resources folder will be copied to the
folder that contains the application executable file, and that the newest version will always
be used.

Completing that Great User Experience Chapter 10

[513]

We can then add a menu item or button to our application, which the users can select to
open the document directly. In our View Model command that is data bound to this
control, we can call the Start method of the Process class, passing the path of the help
file, to open the file in the default application on the user's computer:

System.Diagnostics.Process.Start(filePath);

We can get the folder path of the application executable file, using the following code:

string filePath = System.AppDomain.CurrentDomain.BaseDirectory;

Therefore, if our Resources folder is in the startup project, we could attain its folder path
like this:

string filePath = Path.Combine(
 new DirectoryInfo(System.AppDomain.CurrentDomain.BaseDirectory).
 Parent.Parent.FullName, "Resources");

This utilizes the DirectoryInfo class to access the parent folder of the executable file, or
the root directory of the project, and the Combine method of the Path class to create a file
path that combines the new Resources folder with that path.

If we don't have a complete documentation file for our application, a quick and simple
alternative would be to add an information icon to each View. This image control could
display pertinent information to the users in a tooltip when they place their mouse pointer
over it:

Using the information icon from the Visual Studio Image Library that was discussed in
Chapter 8, Creating Visually Appealing User Interfaces, we can create these help points like
this:

<Image Source="pack://application:,,,/CompanyName.ApplicationName;
 component/Images/Information_16.png" Stretch="None" ToolTip="Here is
 some relevant information" />

Either way, the idea is to provide the users of the application with any help that they may
need right from the application itself. This not only improves the usability of our
applications but also reduces user errors and increases data quality.

Completing that Great User Experience Chapter 10

[514]

Enabling user preferences
The users of our applications are likely to be very different to each other, or at least have
their individual preferences. One user may prefer to work in one way, while another may
have different preferences. Providing the ability for them to customize the application to
suit the way they work will increase the usability of the application for them.

This may relate to the View that they prefer to see when the application starts, or to which
particular options in each View that they prefer to use, or even to the size and position of
the application when it was last used. There are any number of preferences that we can
offer each user.

Luckily, we can offer this customization functionality with minimal work, as the .NET
Framework provides us with settings files for just this purpose. These settings can either
have application or user scope and can be mixed and matched in each settings file.

Application settings are the same for each user and are suited to storing configuration
settings, such as email server details or credentials. User settings can be different for each
user and are suited to the kind of personal customizations just discussed.

Typically, the startup project will already have a settings file named Settings.settings.
It can be found by opening the Properties folder in the Solution Explorer in Visual
Studio, and opened by double-clicking on it. Alternatively, you can right-click on the
project in the Solution Explorer, select the Properties option, and then select the Settings
tab:

Completing that Great User Experience Chapter 10

[515]

Settings files can also be added to other projects although they are not typically available by
default. In order to add a settings file to another project, we first need to open the project
properties by right clicking on the project in the Solution Explorer and selecting the
Properties option.

In the project properties window, select the Settings tab and click the link that says This
project does not contain a default settings file. Click here to create one. A settings file will
be created within the project Properties folder in the Solution Explorer. We are then free
to start adding our user preferences:

To add our custom settings, click a blank row in the settings file and enter the name, data
type, scope, and default value of the setting. The name will be used in code, and so it
cannot contain spaces. We can select our own custom data types, although whichever type
we select must be serializable. The default value is the initial value that the setting will have
before the user changes it.

Settings will usually be loaded upon application startup and saved just before application
shutdown. As such, it is customary to attach event handlers to the Loaded and Closed
events in the MainWindow.xaml.cs file, although we can also do it in the App.xaml.cs
file if we have configured the application to use it. We can see a typical example here:

using System;
using System.Windows;
using CompanyName.ApplicationName.ViewModels;

namespace CompanyName.ApplicationName
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();

Completing that Great User Experience Chapter 10

[516]

 Loaded += MainWindow_Loaded;
 Closed += MainWindow_Closed;
 }

 private void MainWindow_Loaded(object sender, RoutedEventArgs e)
 {
 MainWindowViewModel viewModel = new MainWindowViewModel();
 viewModel.LoadSettings();
 DataContext = viewModel;
 }

 private void MainWindow_Closed(object sender, EventArgs e)
 {
 MainWindowViewModel viewModel = (MainWindowViewModel)DataContext;
 viewModel.SaveSettings();
 }
 }
}

We attach the two event handlers in the constructor, right after the components are
initialized. In the MainWindow_Loaded method, we instantiate an instance of the
MainWindowViewModel class, call its LoadSettings method, and set it as the window's
DataContext property value.

In the MainWindow_Closed method, we access the instance of the MainWindowViewModel
class from the DataContext property, but, this time, call its SaveSettings method. Now,
let's see these methods in the MainWindowViewModel.cs file:

using CompanyName.ApplicationName.ViewModels.Properties;

...

public void LoadSettings()
{
 Settings.Default.Reload();
 StateManager.AreAuditFieldsVisible =
 Settings.Default.AreAuditFieldsVisible;
 StateManager.AreSearchTermsSaved = Settings.Default.AreSearchTermsSaved;
}

public void SaveSettings()
{
 Settings.Default.AreAuditFieldsVisible =
 StateManager.AreAuditFieldsVisible;
 Settings.Default.AreSearchTermsSaved = StateManager.AreSearchTermsSaved;
 Settings.Default.Save();
}

Completing that Great User Experience Chapter 10

[517]

The first thing that we need to do in the LoadSettings method is to call the Reload
method on the default instance of the settings file. This loads the settings from the settings
file into the Default object. From there, we set each settings property to its corresponding
property that we created in our StateManager class, for use in the application.

Note that the values of each user's personal settings are not stored in the
Settings.settings file. Instead, they are stored in their AppData folder, which is hidden
by default. The exact file path can be found using the ConfigurationManager class, but to
find it we'll need to add a reference to the System.Configuration DLL and use the
following code:

using System.Configuration;

...

string filePath = ConfigurationManager.OpenExeConfiguration(
 ConfigurationUserLevel.PerUserRoamingAndLocal).FilePath;

In my case, that resolves to the following file path:

C:\Users\Sheridan\AppData\Local\CompanyName\
 CompanyName.ApplicationNa_Url_0nu0qp14li5newll2223u0ytheisf2gh\
 1.0.0.0\user.config

Note that the folder in the CompanyName folder is named using a particular identification
number that relates to the current settings and application version. Over time and after
making changes, new folders will appear here with new identification numbers, but this is
all totally transparent to the users as their previous settings will be safely transferred.

Extending common courtesies
One area of application development where we can easily make great improvements is
usability. Many applications these days are created with little or no concern for the end
users that will be using the application each day.

We've probably all seen applications that spew out exception stack traces when errors
occur, and while we, as developers, may find that useful, it can be confusing or even
alarming for the end users. Instead of worrying the end users unnecessarily, we can output
stack traces and any other pertinent information about each error to an Errors table in our
database.

Completing that Great User Experience Chapter 10

[518]

Extending this idea further, it is good working practice to totally avoid using any
development terms or phrases anywhere in the application that the users can see. That
includes all UI labels along with any additional external help files and documentation.
Using terms of this kind will make the application more difficult to use, especially for new
users. All but the best known abbreviations should also be avoided.

We can further humanize our application by paying attention to the small details. How
often have you come across an application that displays a label that says something like "1
passengers" or "2 item." While this is a very simple problem to fix, it is commonly found in
many applications. Let's create a new Extension Method to encapsulate this useful
functionality in an IntegerExtensions class:

public static string Pluralize(this int input, string wordToAdjust)
{
 return $"{wordToAdjust}{(input == 1 ? string.Empty : "s")}";
}

In this example, we simply use String Interpolation to append an s to the end of the
wordToAdjust input parameter when the value of the this input parameter is not 1. While
this will work for most words that we are likely to use, it is worth noting that there are
some groups of words that this will not work with.

For example, some words, such as "Activity," ending with a "y" in their singular form, will
end with "ies" when pluralized. However, this problem can be easily addressed by either
adding a new overload of our Pluralize method or an additional input parameter that
enables the users of our code to specify the transformation that they require.

With this method, we now have a really simple way to always ensure that our spelling is
correct when dealing with quantities. Let's see how we might use this method to pluralize
the word Ticket, but only when the amount of tickets in the Tickets collection is not 1:

public string TicketCountText => Tickets.Count.Pluralize("Ticket");

An extension to this method could combine this functionality with the actual number to
output 6 Tickets , for example. Let's take a look at this new method:

public static string Combine(this int input, string wordToAdjust)
{
 return $"{input} {wordToAdjust}{(input == 1 ? string.Empty : "s")}";
}

Completing that Great User Experience Chapter 10

[519]

The Combine method is very similar to the Pluralize method, except that it also includes
the value of the input input parameter in the text output. We could also extend this
method in the same way that we could extend the Pluralize method to handle the
pluralization of words other than those that just require an s to be appended. We can also
use it in the same way:

public string TicketCountText => Tickets.Count.Combine("Ticket");

Another way that we could humanize our textual output would be to provide a selection
summary field that displays a comma-separated list of the selected items in a collection
control. Clearly, this wouldn't be required for controls that only allow single selections to
be made; however, it could be a useful confirmation for those using multiple selection
collection controls. Let's see how we could declare a ToCommaSeparatedString method
now:

using System.Text;

...

public static string ToCommaSeparatedString<T>(
 this IEnumerable<T> collection)
{
 StringBuilder stringBuilder = new StringBuilder();
 int index = 0;
 foreach (T item in collection)
 {
 if (index > 0)
 {
 if (index < collection.Count() - 1) stringBuilder.Append(", ");
 else if (index == collection.Count() - 1)
 stringBuilder.Append(" and ");
 }
 stringBuilder.Append(item.ToString());
 index++;
 }
 return stringBuilder.ToString();
}

Here, we have a method that we can call on any collection that is either of the type of, or
extends, the IEnumerable<T> interface and receives a string back that contains a comma-
separated list of each contained element. We can either call it with a string collection or
implement the object.ToString method in our classes, as that will be called on each
element.

Completing that Great User Experience Chapter 10

[520]

This method uses the StringBuilder class to build the comma-separated list. As the
StringBuilder class has a slight overhead when being initialized and when exporting the
constructed string, tests have shown that it only really offers an improvement in time over
basic string concatenation when appending 10 or more strings.

You may therefore prefer to refactor this method to remove the StringBuilder object,
although you may also find that the difference in milliseconds is negligible. Returning to
the method, after declaring the StringBuilder object, we initialize the index variable,
which is used to specify which separator to join each string with.

When the index variable equals zero and no strings have yet been added to the
StringBuilder object, no separator will be appended. After that, we check whether the
current string is the last in the collection, and if it is, we prepend " and " to it; otherwise,
we prepend a comma and a space to it.

After each iteration, we increment the index variable, and when finished, we return the
output from the StringBuilder object. It could be used to display a comma-separated list
of the products that a user has selected like this:

SelectedProducts.Select(p => p.Name).ToCommaSeparatedString();

As you can see, there are many ways that we can humanize our output for the end users, to
make them feel more at ease when using our applications. Let's now move on to see other
ways that we can provide that great user experience for our users.

Unburdening the end user
There are many things that we can do to make the life of the end users easier. One simple
example would be to set the focus in a form to the first field, so that users can start typing
as soon as they load a View, without first needing to focus it manually.

We saw one way to do this using an Attached Property in Chapter 4, Becoming Proficient
with Data Binding, but we can also achieve this easily, by first adding a new bool property
into our BaseViewModel class:

private bool isFocused = false;

...

public bool IsFocused
{
 get { return isFocused; }
 set { if (isFocused != value) { isFocused = value;

Completing that Great User Experience Chapter 10

[521]

 NotifyPropertyChanged(); } }
}

Next we can add a style resource into the application resources in the App.xaml file:

<Style TargetType="{x:Type TextBox}">
 <!-- Define default TextBox style here -->
</Style>
<Style x:Key="FocusableTextBoxStyle" TargetType="{x:Type TextBox}"
 BasedOn="{StaticResource {x:Type TextBox}}">
 <Style.Triggers>
 <DataTrigger Binding="{Binding IsFocused}" Value="True">
 <Setter Property="FocusManager.FocusedElement"
 Value="{Binding RelativeSource={RelativeSource Self}}" />
 </DataTrigger>
 </Style.Triggers>
</Style>

This assumes that we already have a default style that we want to use for our TextBox
controls and that our new style will be based on that, but add this additional focusable
functionality. It simply consists of a single data trigger that uses the FocusedElement
property of the FocusManager class to focus the TextBox element that has this style
applied to it when the IsFocused property is set to true.

Therefore, all we need to do to focus a particular TextBox control in a View is to apply this
style to it and set the IsFocused property from the BaseViewModel class to true in the
appropriate place in the related View Model:

IsFocused = true;

Note that the TextBox control will become focused as the property becomes true , and so
if the property is already true, we may need to first set it to false before again setting it to
true to get this to work. For example, if the property was true before the View was
loaded, then the TextBox control would not become focused.

Another simple example of making our application users' lives easier would be to pre-
populate any form fields that we may be able to. For example, if our application has a login
screen that uses the users' Windows username, we could fill in the user name field in the
form after accessing it from the WindowsIdentity class like this:

UserName = WindowsIdentity.GetCurrent().Name;

Another example of this might be to pre-populate form fields with the most commonly
used values. We could perhaps fill in a date field with today's date or an Amount Paid field
to the total amount, if that is what the users typically do.

Completing that Great User Experience Chapter 10

[522]

We do, however, need to be careful when doing this because if we get the default value(s)
wrong, it could backfire and actually take the users longer to delete the default value and
replace it with the value that they want than to just input the value directly. Remember, the
idea is to save the users time and make them more productive.

Quite often, we can save the users of our applications a great amount of time. If we have
the chance to ask them exactly what they do and how they would use the application on a
day-to-day basis, then we can usually program a lot of their operations into functions in the
application.

For example, if any users have to repeatedly edit a number of files with the same data,
perhaps to add, remove, or update a particular field, then we could build that functionality
straight into the application.

Instead of making them edit a single record at a time, we could provide a View where they
set the field, or fields to change, and the new value(s), along with the ability to select
multiple records, and therefore save them a great deal of time and effort.

All menial, or repetitive tasks can be programmed into functions, and so writing a good
application is not just restricted to making pretty and asynchronous UIs but also to making
it highly usable. Furthermore, the more useful the application is, the more productive the
users will become, and the more lavish the praise that will be bestowed on us and our
development teams, if applicable.

Summary
In this chapter, we discussed further ways to improve our applications, making them as
useful to the end users as possible. We investigated how we could implement a custom
user feedback system to keep the users informed with the status of the operations that they
perform.

We also examined how to make our applications asynchronous, so that our UI won't freeze
when the application is performing long running operations. We then looked at one way of
building this asynchronous behavior right into our application framework so that we can
run any data access operation asynchronously with minimal code.

Completing that Great User Experience Chapter 10

[523]

We ended with a short section dedicated to improving the way that our applications are
perceived by the end users. In it, we detailed a number of ways of accomplishing this, from
providing in-application help and user preferences to paying attention to the smaller details
and implementing work-heavy functions to save the users from having to manually do the
same.

In the next chapter, we'll be looking at a number of ways to improve the performance of
our applications, from utilizing the power of installed graphics cards to writing more
efficient code. We'll also look into how we can improve the efficiency of our data bindings
and resources, and investigate other techniques, such as data virtualization.

11
Improving Application

Performance
The performance of Windows Presentation Foundation (WPF) applications, in general, is
one of its biggest problems. The more visual layers that our rendered data objects and UIs
contain, the more time it takes to render them, so we often need to maintain a balance
between making our applications visually appealing and making them perform better.

This situation can be improved by running our WPF applications on more powerful
computers. This explains why these applications are most prevalent in the financial
industry. However, not everyone can afford to update all of their users' computers for this
purpose.

Luckily, there are a number of ways in which we can improve the performance of our WPF
applications, and we'll investigate them here. The art of improving application performance
really comes down to making a lot of small improvements that, together, all add up to a
noticeable difference.

In this chapter, we'll explore how we can better utilize the graphics rendering power of our
computer's graphics card and declare our resources more efficiently. We'll investigate how
we can improve our application's performance by opting to use lighter weight UI controls,
more efficient data binding modes, and by employing other techniques, such as
virtualization.

Improving Application Performance Chapter 11

[525]

Leveraging the power of hardware rendering
As we've already learned, the visuals that WPF can output, while beautiful, can be
very CPU-intensive and we often need to bear this in mind when designing our Views.
However, rather than compromising our designs, we can offload the intensive rendering
processes to the host computer's Graphics Processing Unit (GPU) instead.

While WPF will default to utilize its software rendering pipeline, it is also able to take
advantage of a hardware rendering pipeline. This hardware pipeline leverages features of
Microsoft DirectX, as long as the host PC has DirectX version 7, or higher, installed.
Furthermore, if the version of DirectX that is installed is version 9 or higher, increased
performance improvements will be seen.

The WPF Framework looks at the graphics hardware that is installed on the computer that
it is running on and puts it into one of three categories, depending on its features, such as
video RAM, shaders, and support for multi-textures. If it does not support version 7 of
DirectX or higher, then it is classed in Rendering Tier 0 and will not be used for hardware
rendering at all.

However, if it does support DirectX version 7 or higher, but less than version 9, then it is
classed in Rendering Tier 1 and will be used for partial hardware rendering. However, as
practically all new graphics cards support versions of DirectX higher than 9, they would all
be classed in Rendering Tier 2 and would be used for full hardware rendering.

As the UI will freeze during the rendering time, care should be taken to minimize the
number of visual layers that are rendered. Therefore, for WPF applications that will run on
computers that have graphics hardware classed in Rendering Tier 0 and use software
rendering, we need to take extra care.

However, if our application is likely to be run on older computers, or computers with older
graphics hardware, we can detect this using the rendering tier and run more efficient code
in these instances. We can find out the rendering tier of the host computer's graphics
hardware using the static Tier property of the RenderCapability class.

Unfortunately, instead of the type of this property being some kind of useful enumeration,
it is, in fact, an integer, where only the high-order word represents the value of the tier and
can be either 0, 1, or 2. We can attain it by shifting the bits in the integer to read the value
from just the last two bytes:

using System.Windows.Media;

...

int renderingTier = RenderCapability.Tier >> 16;

Improving Application Performance Chapter 11

[526]

Once we know the rendering tier of the host computer's graphics hardware, we can write
code accordingly. For example, let's imagine that we had a processor-intensive View, with
lots of visuals making up each item in a collection. We could set the tier value to a property
and data bind it to the View, where we could select different data templates to use
depending on the processing power of the host computer. Let's examine this example by
first creating the missing enumeration:

namespace CompanyName.ApplicationName.DataModels.Enums
{
 public enum RenderingTier
 {
 Zero = 0,
 One = 1,
 Two = 2
 }
}

Next, we need to add a property of the RenderingTier type into our StateManager class
from Chapter 3, Writing Custom Application Frameworks:

public RenderingTier RenderingTier { get; set; }

We don't need to inform the INotifyPropertyChanged interface of any changes to this
property because it will only be set once upon application startup. Let's adjust our previous
example:

public App()
{
 StateManager.Instance.RenderingTier =
 (RenderingTier)(RenderCapability.Tier >> 16);
}

After casting the bit shifted integer value into our RenderingTier enumeration and
setting it to the new RenderingTier property in the StateManager class, we can then
start to use it in our Views to determine the level of visualizations that we can employ:

<ListBox ItemsSource="{Binding Products}">
 <ListBox.Style>
 <Style TargetType="{x:Type ListBox}">
 <Setter Property="ItemTemplate"
 Value="{StaticResource SimpleDataTemplate}" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding
 StateManager.Instance.RenderingTier}" Value="One">
 <Setter Property="ItemTemplate"
 Value="{StaticResource MoreComplexDataTemplate}" />
 </DataTrigger>

Improving Application Performance Chapter 11

[527]

 <DataTrigger Binding="{Binding
 StateManager.Instance.RenderingTier}" Value="Two">
 <Setter Property="ItemTemplate"
 Value="{StaticResource MostComplexDataTemplate}" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </ListBox.Style>
</ListBox>

In this example, we have a ListBox control that is displaying a collection of products. The
idea is that we can declare three different data templates to define what each product will
look like. We have a SimpleDataTemplate template that might just provide a text-based
output, a MoreComplexDataTemplate template that could contain some basic visuals, and
a MostComplexDataTemplate template that could contain several layers of visuals.

In the style that is applied to the list box, we set the default SimpleDataTemplate
template as the value of its ItemTemplate property. Using the RenderingTier property
of the StateManager class, we then declare a couple of data triggers to switch the value of
the ItemTemplate property to one of the more complex templates, depending on the
rendering tier of the host computer.

Making more efficient resources
When we reference our resources, we can either use a StaticResource or a
DynamicResource. If you remember from Chapter 5, Using the Right Controls for the Job, a
StaticResource will look up the value of the resource just once, which is comparative to
a compile-time lookup. A DynamicResource will repeatedly look up the value of the
resource each time it is requested, whether it has changed or not, just like a runtime lookup.

For this reason, we should only ever use a DynamicResource if we really need to, as we
can attain a much better performance by using the StaticResource class instead. If we
find that we need to use a lot of DynamicResource references to access our resources, then
we can refactor our code to data bind to properties in our StateManager class instead of
the resources, in order to increase performance.

Another simple way to improve the performance of our resources is to reuse them. Instead
of declaring them inline in the place that they are used in the XAML, we should declare
them in a suitable resource section and reference them.

Improving Application Performance Chapter 11

[528]

In this way, each resource is created just once and shared. To extend this idea further, we
could define all of our shared resources in the application resources in the App.xaml file
and share them between all of the application Views.

Imagine a situation where some brush resources were declared inline with the XAML
within a DataTemplate element. Now imagine that this template is set as the
ItemTemplate of an ItemsControl object and that the collection that is data bound to its
ItemsSource property contains a thousand elements.

The application will, therefore, create a thousand brush objects with identical properties for
each brush that is declared locally within the data template. Now compare this to another
situation where we declare each required brush just once in a resource section and
reference it from the template. It's clear to see the benefit of this method and the huge
savings that can be made of the computer's resources.

Furthermore, this idea also affects the Resources sections of our Views, especially if we are
displaying more than one of them at once. If we declare a View to define how each object in
a collection should be rendered, then all of the resources that are declared in the View will
be initialized once for each element in the collection. In this case, it is better to declare them
at the application level.

Freezing objects
In WPF, certain resource objects, such as animations, geometries, brushes, and pens, can be
made Freezable. This provides special features that can help to improve the performance
of our WPF applications. Freezable objects can either be frozen or unfrozen. In the
unfrozen state, they behave like any other object; however, when frozen, they become
immutable and can no longer be modified.

The main benefit of freezing objects is that it can improve application performance, because
frozen objects no longer require resources to be consumed when monitoring and issuing
change notifications. Another benefit is that a frozen object is also safe to be shared across
threads, unlike unfrozen objects.

Many UI-related objects extend the Freezable class to provide this functionality and most
Freezable objects relate to the graphics sub-system, as rendering visuals is one of the
areas where performance improvements are most needed.

Improving Application Performance Chapter 11

[529]

Classes such as the Brush, Geometry, and Transform classes contain unmanaged
resources and the system must monitor them for changes. By freezing these objects and
making them immutable, the system is able to free up its monitoring resources and better
utilize them elsewhere. Furthermore, even the memory footprint of a frozen object is
considerably less than its unfrozen counterpart.

Therefore, in order to make the greatest performance improvements, we should get used to
freezing all of our resources in all of the Resource sections, as long as we have no plans to
modify them. As most resources typically remain unmodified, we are usually able to freeze
the vast majority of them and gain significant and noticeable improvements in performance
by doing so.

In Chapter 8, Creating Visually Appealing User Interfaces, we learned how to freeze a
Freezable object in code by calling its Freeze method. Let's now look at how we can
freeze our resources in XAML. First, we need to add a XAML namespace prefix to the
presentation options namespace to access its Freeze attribute:

xmlns:PresentationOptions=
 "http://schemas.microsoft.com/winfx/2006/xaml/presentation/options
"xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="PresentationOptions"

Note that we also include another XAML namespace prefix to be able to access the
Ignorable attribute, and we set our PresentationOptions prefix as its value. This is
because the Freeze attribute is primarily only recognized by the WPF XAML processor,
and, in order to maintain compatibility with other XAML readers, we need to specify that
the attribute can be ignored.

We'll find a full example in the Drawing conclusions section coming up soon, but for now,
using a resource from an earlier example, let's examine how to freeze a Freezable object in
XAML:

<DropShadowEffect x:Key="Shadow" BlurRadius="10" Direction="270"
 ShadowDepth="7" Opacity="0.5" PresentationOptions:Freeze="True" />

Some Freezable objects, such as the animation and geometry objects, can contain other
Freezable objects. When a Freezable object is frozen, its child objects are also frozen.
However, there are a few cases where a Freezable object cannot be frozen.

One case happens if it has any properties that might change in value, due to animations,
data binding, or DynamicResource references. The other case occurs when the Freezable
object has any child objects that cannot be frozen.

Improving Application Performance Chapter 11

[530]

If we are freezing resource type objects in the code behind of a custom control, for example,
then we can call the CanFreeze property of the Freezable class to check whether each
Freezable object can be frozen before attempting to freeze them:

EllipseGeometry ellipseGeometry =
 new EllipseGeometry(new Rect(0, 0, 500, 250));
if (ellipseGeometry.CanFreeze) ellipseGeometry.Freeze();
Path.Data = ellipseGeometry;

Once a Freezable object is frozen, it cannot be modified, and attempting to do so will
cause an InvalidOperationException to be thrown. Note that a Freezable object
cannot be unfrozen; so, to avoid this situation, we can check the value of the IsFrozen
property before attempting to modify the object. If it is frozen, we can make a copy of it
using its Clone method and modify that instead:

if (ellipseGeometry.IsFrozen)
{
 EllipseGeometry ellipseGeometryClone = ellipseGeometry.Clone();
 ellipseGeometryClone.RadiusX = 400;
 ellipseGeometryClone.Freeze();
 Path.Data = ellipseGeometryClone;
}
else ellipseGeometry.RadiusX = 400;

If a Freezable object is cloned, any Freezable children that it might have will also be
copied to enable modification. When a frozen object is animated, the animation system will
make cloned copies of it in this way so that it can modify them. But, as this adds an
overhead to performance, it is advisable not to freeze a Freezable object if you expect to
be animated.

Using the right controls for performance
As we mentioned previously, there are usually several different ways of achieving the same
functionality, or UI display, when using WPF. Some ways will provide better performance
than others. For example, we learned how some panels do more intensive layout work and,
therefore, consume more CPU cycles and/or RAM than others.

Therefore, this is one area that we can investigate in order to make performance
improvements. If we do not require the complex layout and resizing abilities of a Grid
panel, then we can gain a performance improvement by utilizing a more efficient
StackPanel or Canvas panel instead.

Improving Application Performance Chapter 11

[531]

Another example could be that if we do not require the ability to select in a collection
control, then we should use an ItemsControl element instead of a ListBox. While
swapping one control will not make much of a performance improvement on its own,
making this same swap in the DataTemplate of an item that will be displayed thousands
of times will make a noticeable difference.

As we discovered in Chapter 5, Using the Right Controls for the Job, each time a UI element is
rendered, the layout system must complete two passes, a measure pass and an arrange
pass, which is collectively known as a layout pass. If the element has children and/or
grandchildren, they will all need to complete the layout pass too. This process is intensive
and the fewer passes that can be made, the quicker our Views will render.

As mentioned earlier, we need to be careful to ensure that we do not unnecessarily trigger
additional passes of the layout system, as this can lead to poor performance. This can occur
when adding or removing items to or from a panel, applying transforms on the elements, or
by calling the UIElement.UpdateLayout method, which forces a new layout pass.

Because of the way that changes to a UI element will invalidate its children and force a new
layout pass, we need to be especially careful when building hierarchical data in code. If we
create the child elements first, then their parent objects, and then the parents of those
objects, and so on, we will incur a huge performance hit, due to the existing child items
being forced to perform multiple layout passes.

In order to address this issue, we need to always ensure that we build our tree from the top-
down, rather than the top-up method just described. If we add the parent element(s) first,
then add their children and their children if any, we can avoid the additional layout passes.
The performance improvement of using the top-down method is approximately five times
quicker to render, and so is not insignificant. Let's take a look at some further control-
related performance benefits that we can employ next.

Drawing conclusions
When we have a requirement to draw shapes in our UI, such as in our callout window
example in Chapter 8, Creating Visually Appealing User Interfaces, we tend to use the abstract
Shape class or, more accurately, one or more of its derived classes.

The Shape class extends the FrameworkElement class, so it can make use of the layout
system, be styled, have access to a range of stroke and fill properties, and its properties can
be data bound and animated. This makes it easy to use and, generally, the preferred
method of drawing in WPF applications.

Improving Application Performance Chapter 11

[532]

However, WPF also provides lower-level classes that can achieve the same end results, but
more efficiently. The five classes that extend the abstract Drawing class have a much
smaller inheritance hierarchy and, as such, have a much smaller memory footprint than
their Shape object-based counterparts.

The two most commonly used classes include the GeometryDrawing class, which is used
to draw geometrical shapes, and the DrawingGroup class, which is used to combine
multiple drawing objects into a single composite drawing.

Additionally, the Drawing class is also extended by the GlyphRunDrawing class, which
renders text; the ImageDrawing class, which displays images; and the VideoDrawing
class, which enables us to play video files. As the Drawing class extends the Freezable
class, further efficiency savings can be made by freezing its instances, that is, if they do not
need to be modified afterward.

There is one other, and potentially even more efficient, method of drawing shapes in WPF.
The DrawingVisual class does not provide event handling or layout functionality, so its
performance is improved compared with other drawing methods. However, this is a code-
only solution and there is no XAML-based DrawingVisual option.

Furthermore, its lack of layout abilities means that, in order to display it, we need to create
a class that extends a class that provides layout support in the UI, such as the
FrameworkElement class. To be even more efficient, though, we could extend the Visual
class, as that is the lightest-weight class that can be rendered in the UI, with the fewest
properties and no events to handle.

This class would be responsible for maintaining a collection of Visual elements to be
rendered, creating one or more DrawingVisual objects to add to the collection, and
overriding a property and a method, in order to participate in the rendering process. It
could also, optionally, provide event handling and hit-testing capabilities if user interaction
was required.

It really depends on what we want to draw. Typically, the more efficient the drawing, the
less flexible it is. For example, if we were just drawing some static clipart, background
image, or, perhaps, logo, we could take advantage of the more efficient drawing methods.
However, if we need our drawing to grow and shrink as the application windows change
size, then we'll need to use the less efficient methods that provide more flexibility, or use
another class in addition that provides that functionality.

Improving Application Performance Chapter 11

[533]

Let's explore an example that creates the same graphical image using each of the three
different drawing methods. We'll define some smiley face emoticons, starting with the
Shape-based method on the left-hand side, the Drawing object-based method in the center,
and the DrawingVisual-based method on the right. Let's first look at the visual output:

Now, let's inspect the XAML:

<UserControl x:Class="CompanyName.ApplicationName.Views.DrawingView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls=
 "clr-namespace:CompanyName.ApplicationName.Views.Controls"
 xmlns:PresentationOptions=
 "http://schemas.microsoft.com/winfx/2006/xaml/presentation/options"
 Width="450" Height="150">
 <Grid>
 <Grid.Resources>
 <RadialGradientBrush x:Key="RadialBrush" RadiusX="0.8" RadiusY="0.8"
 PresentationOptions:Freeze="True">
 <GradientStop Color="Orange" Offset="1.0" />
 <GradientStop Color="Yellow" />
 </RadialGradientBrush>
 </Grid.Resources>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="3*" />
 <RowDefinition Height="2*" />
 <RowDefinition Height="2*" />

Improving Application Performance Chapter 11

[534]

 <RowDefinition Height="2*" />
 <RowDefinition Height="3*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Ellipse Grid.RowSpan="5" Grid.ColumnSpan="5"
 Fill="{StaticResource RadialBrush}" Stroke="Black"
 StrokeThickness="5" />
 <Ellipse Grid.Row="1" Grid.Column="1" Fill="Black" Width="20"
 HorizontalAlignment="Center" />
 <Ellipse Grid.Row="1" Grid.Column="3" Fill="Black" Width="20"
 HorizontalAlignment="Center" />
 <Path Grid.Row="3" Grid.Column="1" Grid.ColumnSpan="3" Stroke="Black"
 StrokeThickness="10" StrokeStartLineCap="Round"
 StrokeEndLineCap="Round" Data="M0,10 A10,25 0 0 0 12.5,10"
 Stretch="Fill" HorizontalAlignment="Stretch" />
 </Grid>
 <Canvas Grid.Column="1">
 <Canvas.Background>
 <DrawingBrush PresentationOptions:Freeze="True">
 <DrawingBrush.Drawing>
 <DrawingGroup>
 <GeometryDrawing Brush="{StaticResource RadialBrush}">
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center="50,50" RadiusX="50"
 RadiusY="50" />
 </GeometryDrawing.Geometry>
 <GeometryDrawing.Pen>
 <Pen Thickness="3.5" Brush="Black" />
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 <GeometryDrawing Brush="Black">
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center="29.5,33" RadiusX="6.75"
 RadiusY="8.5" />
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <GeometryDrawing Brush="Black">
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center="70.5,33" RadiusX="6.75"
 RadiusY="8.5" />
 </GeometryDrawing.Geometry>
 </GeometryDrawing>

Improving Application Performance Chapter 11

[535]

 <GeometryDrawing>
 <GeometryDrawing.Geometry>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="23,62.5">
 <ArcSegment Point="77,62.5" Size="41 41" />
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </GeometryDrawing.Geometry>
 <GeometryDrawing.Pen>
 <Pen Thickness="7" Brush="Black" StartLineCap="Round"
 EndLineCap="Round" />
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 </DrawingGroup>
 </DrawingBrush.Drawing>
 </DrawingBrush>
 </Canvas.Background>
 </Canvas>
 <Canvas Grid.Column="2">
 <Canvas.Background>
 <VisualBrush>
 <VisualBrush.Visual>
 <Controls:SmileyFace />
 </VisualBrush.Visual>
 </VisualBrush>
 </Canvas.Background>
 </Canvas>
 </Grid>
</UserControl>

The first thing that we can see straight away from this example is that the Shape object-
based method of drawing is far simpler, achieving the same output as the far more verbose
Drawing object-based method in far fewer lines of XAML. Let's now investigate the code.

After defining the PresentationOptions XAML namespace, we declare a
RadialGradientBrush resource and optimize its efficiency, by freezing it using the
Freeze attribute that was discussed earlier in the chapter. Note that if we were planning on
using this control multiple times simultaneously, then we could be even more efficient, by
declaring all of our Brush and Pen objects in the application resources and referencing
them with StaticResource references.

Improving Application Performance Chapter 11

[536]

We then declare an outer Grid panel that has two columns. In the left column, we declare
another Grid panel, with five rows and five columns. This inner panel is used to position
the various Shape elements that make up the first smiley face. Note that we use star sizing
on the row definitions of this panel in order to slightly increase the sizes of the top and
bottom rows to better position the eyes and mouth of the face.

Inside the panel, we define an Ellipse object to create the overall shape of the face, fill it
with our brush from the resources, and add an outline with a black brush. We then use two
further Ellipse elements filled with the black brush to draw the eyes and a Path element
to draw the smile. Note that we do not fill the Path element, as that would look more like
an open mouth than a smile.

Two other important points to note are that we must set the Stretch property to Fill in
order to get the Path element to fill the available space that we provide it with, and we
must set the StrokeStartLineCap and StrokeEndLineCap properties to Round to
produce the nice, rounded ends of the smile.

We specify the shape that the Path element should be using its Data property and the
inline mini-language that we used previously. Let's now break this value down into the
various mini-language commands:

M0,10 A10,25 0 0 0 12.5,10

As with the previous example, we start with the Move command, specified by M and the
following coordinate pair, which dictates the start point for the line. The remainder is taken
up with the Elliptical Arc command, which is specified by A and the following five figures.

In order, the five figures of the Elliptical Arc command relate to the size of the arc, or its x
and y radii, its rotation angle, a bit field to specify whether the angle of the arc should be
greater than 180 degrees or not, another bit field to specify whether the arc should be
drawn in a clockwise or an anti-clockwise direction, and, finally, the end point of the arc.

Full details of this path mini-language syntax can be found on the Microsoft website. Note
that we could change the bit field of the drawing direction to a 1 in order to draw a frown
instead:

M0,10 A10,25 0 0 1 12.5,10

Now, let's move onto the second column of the outer Grid panel now. In this column, we
recreate the same smiley face but using the more efficient Drawing object-based objects. As
they cannot render themselves like the Shape classes and we need to utilize other elements
to do that job for us, we define them inside a DrawingBrush element and use that to paint
the background of a Canvas object.

Improving Application Performance Chapter 11

[537]

There are two important things to note here. The first is that we could have used the
DrawingBrush element to paint any class that extends the FrameworkElement class, such
as a Rectangle element, or another type of panel.

The second is that as we have frozen the DrawingBrush element using the Freeze
attribute, all of the inner elements that extend the Freezable type will also be frozen. In
this case, that includes the GeometryDrawing objects, the EllipseGeometry and
PathGeometry objects, and even the Brush and Pen elements that were used to paint
them.

When using a DrawingBrush object to render our drawings, we must define them using
the Drawing property. As we want to build up our image from multiple Drawing-based
objects, we need to wrap them all in a DrawingGroup object.

In order to recreate the overall shape of the face, we start with a GeometryDrawing
element and specify an EllipseGeometry object as its Geometry property value. With this
GeometryDrawing element, we paint the background by setting a reference of our
RadialGradientBrush resource to its Brush property, and define a new Pen instance in
its Pen property to specify a stroke for it.

As with all Geometry objects, we specify its dimensions so that they are in scale with each
other, rather than using exact pixel sizes. For example, our View is 150 pixels high;
however, instead of setting the Center property of this EllipseGeometry object to 75,
which is half of the height, we have set it to 50.

As the two radii properties are also set to 50, they remain in scale with the position of the
center and the resulting image is scaled to fit the container that it is rendered in. The scale
that we use is up to our preference. For example, we could divide or multiply all of the
coordinates, radii, and brush and pen thicknesses in our drawing example by the same
amount and we would end up with the same face visual.

Next, we add another GeometryDrawing element with an EllipseGeometry object
specified in its Drawing property for each of the two eyes on the face. These have no stroke
and so have nothing assigned to the Pen property and are colored only using a black Brush
set to their Brush properties. The final GeometryDrawing element hosts a PathGeometry
object that draws the smile on the face.

Note that defining a PathGeometry object in XAML is far more verbose than using the
path mini-language syntax. In it, we need to specify each PathFigure element in the
PathFigures collection property, although actually declaring the surrounding collection
in XAML is optional. In the case of our smile, we just need to define a single PathFigure
element containing an ArcSegment object.

Improving Application Performance Chapter 11

[538]

The StartPoint property of the PathFigure element dictates where the arc should start,
the Size property of the ArcSegment object relates to the size of the arc, or its x and y radii,
while its Point property specifies the end point of the arc.

In order to define round ends for the smile, as we did with the previous smiley face, the
Pen element that we specify for this PathGeometry object must have its StartLineCap
and EndLineCap properties set to the Round member of the PenLineCap enumeration.
This completes the second method of drawing a smiley face.

The third method uses DrawingVisual objects in code internally and results in a Visual
object. As the items in the Children collection of the Grid panel are of
the UIElement type, we cannot add our Visual control to it directly. Instead, we can set it
to the Visual property of a VisualBrush element and paint the background of an efficient
container, such as a Canvas control, with it.

Let's now take a look at the code in this SmileyFace class:

using System;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Media;

namespace CompanyName.ApplicationName.Views.Controls
{
 public class SmileyFace : Visual
 {
 private VisualCollection visuals;

 public SmileyFace()
 {
 visuals = new VisualCollection(this);
 visuals.Add(GetFaceDrawingVisual());
 }

 private DrawingVisual GetFaceDrawingVisual()
 {
 RadialGradientBrush radialGradientBrush =
 new RadialGradientBrush(Colors.Yellow, Colors.Orange);
 radialGradientBrush.RadiusX = 0.8;
 radialGradientBrush.RadiusY = 0.8;
 radialGradientBrush.Freeze();
 Pen outerPen = new Pen(Brushes.Black, 5.25);
 outerPen.Freeze();
 DrawingVisual drawingVisual = new DrawingVisual();
 DrawingContext drawingContext = drawingVisual.RenderOpen();
 drawingContext.DrawEllipse(radialGradientBrush, outerPen,

Improving Application Performance Chapter 11

[539]

 new Point(75, 75), 72.375, 72.375);
 drawingContext.DrawEllipse(Brushes.Black, null,
 new Point(44.25, 49.5), 10.125, 12.75);
 drawingContext.DrawEllipse(Brushes.Black, null,
 new Point(105.75, 49.5), 10.125, 12.75);
 ArcSegment arcSegment =
 new ArcSegment(new Point(115.5, 93.75), new Size(61.5, 61.5), 0,
 false, SweepDirection.Counterclockwise, true);
 PathFigure pathFigure = new PathFigure(new Point(34.5, 93.75),
 new List<PathSegment>() { arcSegment }, false);
 PathGeometry pathGeometry =
 new PathGeometry(new List<PathFigure>() { pathFigure });
 pathGeometry.Freeze();
 Pen smilePen = new Pen(Brushes.Black, 10.5);
 smilePen.StartLineCap = PenLineCap.Round;
 smilePen.EndLineCap = PenLineCap.Round;
 smilePen.Freeze();
 drawingContext.DrawGeometry(null, smilePen, pathGeometry);
 drawingContext.Close();
 return drawingVisual;
 }

 protected override int VisualChildrenCount
 {
 get { return visuals.Count; }
 }

 protected override Visual GetVisualChild(int index)
 {
 if (index < 0 || index >= visuals.Count)
 throw new ArgumentOutOfRangeException();
 return visuals[index];
 }
 }
}

There are several classes that we could have extended our SmileyFace class from, in order
to display it in the UI. As we saw in Chapter 5, Using the Right Controls for the Job, most UI
controls have a rich inheritance hierarchy, with each extended class offering some
particular functionality.

In order to make the most efficient container for our DrawingVisual, we want to extend a
class that enables it to take part in the layout process, but adds as little additional overhead
via unused properties and unrequired event handling as possible. As such, we have chosen
the Visual class, which cannot be used as a UI element directly in the XAML, but it can be
displayed as the visual of a VisualBrush element and used to paint a surface with.

Improving Application Performance Chapter 11

[540]

To generate one or more DrawingVisual elements in our SmileyFace class, we need to
declare and maintain a VisualCollection instance that will hold the Visual elements
that we want to display. In the constructor, we initialize this collection and add the single
DrawingVisual element that we want to render to it in this example, via the
GetFaceDrawingVisual method.

In the GetFaceDrawingVisual method, we first declare a new version of our
RadialBrush resource using the RadialGradientBrush class and a Pen element and
freeze them using their Freeze methods. Next, we initialize a single DrawingVisual
element and access a DrawingContext object from its RenderOpen method, with which to
draw our shape.

We use the DrawingContext object to draw the ellipse that serves as the background for
the face first. It is colored using the frozen Brush and pen elements. Note that, as the
Visual class has no Stretch property or concept of size, the dimensions that we use here
are exact device-independent pixel dimensions, rather than relative values, as were used in
the previous drawing methods.

In this example, our smiley faces are 150 pixels wide by 150 pixels tall, so the center
position will be half of that. Therefore, these exact pixel values can be calculated by
multiplying the relative values from the previous Drawing-based example by 1.5.

However, we also need to consider the fact that the outline will be drawn half inside the
drawing and half outside. As such, we need to adjust the two radii of this ellipse, reducing
them by half of the outline size. As the pen used for this ellipse has a thickness of 5.25
device-independent pixels, we need to reduce each radius by 2.625.

Next, we call the DrawEllipse method again to draw each of the eyes, passing in a black
brush and no Pen element, along with their newly calculated positions and sizes. For the
smile, we first need to create an ArcSegment element and add that to a collection of
the PathSegment type, while initializing a PathFigure object.

We then add the PathFigure object to a collection and pass that to the constructor of the
PathGeometry object to initialize it. Next, we define the Pen object that will be used to
draw the smile, ensuring that we set its StartLineCap and EndLineCap properties to the
Round member of the PenLineCap enumeration, as in the previous examples.

We then freeze this Pen object and pass it, along with the PathGeometry object, to the
DrawGeometry method of the DrawingContext object to draw it. Finally, we close the
drawing context using its Close method and return the single DrawingVisual element
that we just created.

Improving Application Performance Chapter 11

[541]

While we have now taken care of the code that draws our smiley face, we will not be able to
see anything in the UI yet. In order to participate in the rendering process, we need to
override a couple of members from the Visual class, the VisualChildrenCount
property, and the GetVisualChild method.

When overriding these members, we need to inform the Visual class of the visuals that we
want it to render for us. As such, we simply return the number of items in our internal
VisualCollection object from the VisualChildrenCount property and return the item
in the collection that relates to the specified index input parameter from the
GetVisualChild method.

In this example, we have added a check for invalid values from the index input parameter,
although this shouldn't ever occur if we output the correct number of items from the
VisualChildrenCount property in the first place.

So, now we have seen three different drawing methods for creating the same visual output,
with each being more efficient than the previous one. However, apart from the efficiency
differences, we should also be aware of the differences in these drawing methods when it
comes to the manipulation and versatility of the elements.

As an example, let's adjust the Width of our DrawingView class, set its ClipToBounds
property to true, and view its new output:

 Width="225" Height="150" ClipToBounds="True">

Let's now run the application again and see the output:

As you can see from the preceding screenshot, these drawing methods behave differently
when resized. The first method is redrawn at the current size and the thickness of each
drawn line remains the same, even though the width of this face has been narrowed by the
space provided to it from the parent Grid panel.

Improving Application Performance Chapter 11

[542]

However, the second and third smiley faces actually look like squashed images, where the
thickness of each line is no longer static; the more vertical the line is, the thinner it now
becomes. The overall widths of these faces have also been adjusted by the parent Grid
panel.

The third face, however, has only been scaled by the VisualBrush object that is used to
display it. If instead of extending the Visual class, we had wanted to derive from the
UIElement class to utilize some of its functionality, or perhaps to enable us to display our
SmileyFace control directly in the XAML, then we would see a different output. Let's
make a slight adjustment to our class declaration:

public class SmileyFace : UIElement

Let's also display it directly in the XAML now, replacing the Canvas and
VisualBrush objects that previously displayed it:

<Controls:SmileyFace Grid.Column="2" />

Now, if we run the application again and see the output, it will look very different:

Because we specified exact values for our drawing, our SmileyFace control does not
extend any class that would enable resizing or scaling, and we no longer have the
VisualBrush object to resize it. That is, the drawing remains exactly as it would be at full
size, except that it now no longer fits into the space provided to it from the parent Grid
panel.

In order to build the ability to draw the shape at different sizes into our class, we'll need to
derive it from a class that provides us with additional properties and functionality. The
FrameworkElement class supplies us with both dimension properties that we can use to
draw our shape at the required size and a Loaded event that we can use to delay the
construction of our shape until the relevant size has been calculated by the layout system.

Improving Application Performance Chapter 11

[543]

Let's examine the changes that we'd need to make to achieve this:

public class SmileyFace : FrameworkElement
{
 ...

 public SmileyFace()
 {
 visuals = new VisualCollection(this);
 Loaded += SmileyFace_Loaded;
 }

 private void SmileyFace_Loaded(object sender, RoutedEventArgs e)
 {
 visuals.Add(GetFaceDrawingVisual());
 }

 private DrawingVisual GetFaceDrawingVisual()
 {
 ...
 DrawingVisual drawingVisual = new DrawingVisual();
 DrawingContext drawingContext = drawingVisual.RenderOpen();
 drawingContext.DrawEllipse(radialGradientBrush, outerPen,
 new Point(ActualWidth / 2, ActualHeight / 2), (ActualWidth -
 outerPen.Thickness) / 2, (ActualHeight - outerPen.Thickness) / 2);
 drawingContext.DrawEllipse(Brushes.Black, null, new Point(
 ActualWidth / 3.3898305084745761, ActualHeight / 3.0303030303030303),
 ActualWidth / 14.814814814814815, ActualHeight / 11.764705882352942);
 drawingContext.DrawEllipse(Brushes.Black, null, new Point(
 ActualWidth / 1.4184397163120568, ActualHeight / 3.0303030303030303),
 ActualWidth / 14.814814814814815, ActualHeight / 11.764705882352942);
 ArcSegment arcSegment = new ArcSegment(new Point(ActualWidth /
 1.2987012987012987, ActualHeight / 1.6), new Size(ActualWidth /
 2.4390243902439024, ActualHeight / 2.4390243902439024), 0, false,
 SweepDirection.Counterclockwise, true);
 PathFigure pathFigure = new PathFigure(new Point(ActualWidth /
 4.3478260869565215, ActualHeight / 1.6), new List<PathSegment>() {
 arcSegment }, false);
 PathGeometry pathGeometry =
 new PathGeometry(new List<PathFigure>() { pathFigure });
 ...
 return drawingVisual;
 }

 ...
}

Improving Application Performance Chapter 11

[544]

The first change is that we need to move the call to generate the shape from the constructor
to the SmileyFace_Loaded handling method. If we had not moved this, our shape would
have no size, because the ActualWidth and ActualHeight properties that are used to
define its size would not have been set by the layout system at that time.

Next, in the GetFaceDrawingVisual method, we need to replace the hardcoded values
with divisions of the control's dimensions. The ellipse that draws the whole face is simple
to calculate, with a position of half the width and height of the control and radii of half of
the width and height of the control minus half of the thickness of the Pen element that
draws its outline.

However, if you were wondering where all of the remaining long decimal divisor values
came from, the answer is basic mathematics. The original drawing was 150 pixels wide by
150 pixels tall, so we can divide this by the various positions and sizes of the drawn lines
from the previous example.

For example, the ellipse that draws the first eye was previously centered with an X position
of 44.25. So, to calculate our required width divisor, we simply divide 150 by 44.25,
which equals 3.3898305084745761. Therefore, when the control is provided with 150
pixels of space, it will draw the left eye at an X position of 44.25 and it will now scale
correctly at all of the other sizes.

The divisors for each position and size of the drawn shapes were all calculated using this
method, to ensure that they would be sized appropriately for the space provided to our
control. Note that we could have altered the brush and pen thicknesses likewise, but we
have opted not to do so in this example for brevity.

When running this example now, we again have a slightly different output:

Improving Application Performance Chapter 11

[545]

Now, the first and third faces look more similar, with the thicknesses of their drawn lines
being static and unchanging along their length, unlike the second face. So, we can see that
we have many options when it comes to creating custom drawings, and we need to balance
the need for efficiency with the ease of use of the drawing method and also take the use of
the resulting image into consideration.

Before moving onto the next topic in this chapter, there are a few further efficiency savings
that we can make when drawing complex shapes. If our code uses a large number of
PathGeometry objects, then we can replace them by using a StreamGeometry object
instead.

The StreamGeometry class is specifically optimized to handle multiple path geometries
and shows better performance than can be attained from using multiple PathGeometry
instances. In fact, we have already been using the StreamGeometry class inadvertently, as
that is what is used internally when the binding path mini-language syntax is parsed by the
XAML reader.

It can be thought of in a similar way to the StringBuilder class, in that it is more efficient
at drawing complex shapes than using multiple instances of the PathGeometry class, but it
also has some overhead and so only benefits us when replacing a fair number of them.

Finally, rather than display our DrawingVisual using a VisualBrush, which is refreshed
during each layout pass, if our drawings are never to be manipulated in the UI, it is even
more efficient to create actual images from them and display those instead.

The RenderTargetBitmap class provides a simple way for us to create images from
Visual instances, using its Render method. Let's explore an example of this:

using System.IO;
using System.Windows.Media;
using System.Windows.Media.Imaging;

...

RenderTargetBitmap renderTargetBitmap = new RenderTargetBitmap(
 (int)ActualWidth, (int)ActualHeight, 96, 96, PixelFormats.Pbgra32);
renderTargetBitmap.Render(drawingVisual);
renderTargetBitmap.Freeze();
PngBitmapEncoder image = new PngBitmapEncoder();
image.Frames.Add(BitmapFrame.Create(renderTargetBitmap));
using (Stream stream = File.Create(filePath))
{
 image.Save(stream);
}

Improving Application Performance Chapter 11

[546]

We start by initializing a RenderTargetBitmap object with the required dimensions,
resolution, and pixel format of the image to create. Note that the Pbgra32 member of the
static PixelFormats class specifies a pixel format that follows the sRGB format, using 32
bits per pixel, with each of the four alpha, red, green, and blue channels receiving 8 bits
each per pixel.

Next, we pass our DrawingVisual element, or any other element that extends the Visual
class, to the Render method of the RenderTargetBitmap class to render it. To make the
operation more efficient still, we then call its Freeze method to freeze the object.

In order to save a PNG image file, we first initialize a PngBitmapEncoder object and add
the renderTargetBitmap variable to its Frames collection via the Create method of the
BitmapFrame class. Finally, we initialize a Stream object using the File.Create method,
passing in the desired file name and path, and call its Save method to save the file to the
computer's hard drive. Alternatively, the JpegBitmapEncoder class can be used to create a
JPG image file.

Let's now move on to find ways of using images more efficiently.

Imaging more efficiently
When an image is displayed in a WPF application, it is loaded and decoded in its full size
by default. If your application displays a number of thumbnails from the original images,
then you can gain enhanced performance by copying your full-size images and then
resizing them to the correct size for the thumbnails, rather than letting WPF do it for you.

Alternatively, you can request that WPF decodes your images to the size required by the
thumbnails, although, if you want to display the full-size images, you would really need to
decode each full-size image separately. Let's take a look at how we can achieve this by
using a BitmapImage object as the source for an Image control:

<Image Width="64">
 <Image.Source>
 <BitmapImage DecodePixelWidth="64" UriSource="pack://application:,,,/
 CompanyName.ApplicationName;component/Images/Image1.png" />
 </Image.Source>
</Image>

The important part of this example is the DecodePixelWidth property of the
BitmapImage class, which specifies the actual size of the image to decode to. In this
example, this would result in a smaller memory footprint as well as faster rendering.

Improving Application Performance Chapter 11

[547]

Note that if the DecodePixelHeight and DecodePixelWidth properties of the
BitmapImage class are both set, a new aspect ratio will be calculated from their values.
However, if only one of these properties is set, then the image's original aspect ratio will be
used. It is, therefore, customary to only set one of these properties in order to decode to a
different size from the original, while maintaining its aspect ratio.

Normally, when images are used in a WPF application, they are all cached into memory at
load time. Another benefit that can be gained if using code in the aforementioned scenario
is to set the CacheOption property of the BitmapImage class to the OnDemand
enumeration member, which postpones the caching of the relevant image until the image is
actually requested to be displayed.

This can save a significant amount of resources at load time, although each image will take
a tiny bit longer to display the first time they are displayed. Once the image is cached,
however, it will work in exactly the same way as the images created in the default way.

There is one additional property in the BitmapImage class that can be used to improve the
performance when loading multiple image files. The CreateOptions property is of the
BitmapCreateOptions enumeration type and enables us to specify initialization options
that relate to the loading of images. This enumeration can be set using bitwise combinations
as it specifies the FlagsAttribute attribute in its declaration.

The DelayCreation member can be used to delay the initialization of each image until it is
actually required, thereby speeding up the process of loading the relevant View, while
adding a tiny cost to the process of requesting each image when it is actually required.

This would benefit a photo gallery type of application, for example, where the initialization
of each full-size image could be delayed until the user clicks on the appropriate thumbnail.
It is only at that point that the image would be created, but as there would only be a single
image to create at that point, the initialization time would be negligible.

While it is possible to set more than one of these members to the CreateOptions property
using the bitwise OR operator (|), care should be taken to not also set the
PreservePixelFormat member, unless specifically required, as that can result in lower
performance. When it is not set, the system will choose the pixel format with the best
performance by default. Let's look at a short example:

private Image CreateImageEfficiently(string filePath)
{
 Image image = new Image();
 BitmapImage bitmapImage = new BitmapImage();
 bitmapImage.BeginInit();
 bitmapImage.CacheOption = BitmapCacheOption.OnDemand;
 bitmapImage.CreateOptions = BitmapCreateOptions.DelayCreation;

Improving Application Performance Chapter 11

[548]

 bitmapImage.UriSource = new Uri(filePath, UriKind.Absolute);
 bitmapImage.Freeze();
 bitmapImage.EndInit();
 image.Source = bitmapImage;
 return image;
}

When creating images in code, we need to initialize an instance of the BitmapImage class
to use as the source for the actual Image object that will be displayed in the UI. When doing
so, we need to call its BeginInit method before making changes to it and then call its
EndInit method afterward. Note that all changes made after initialization will be ignored.

During initialization, we set the CacheOption property to the OnDemand member and the
CreateOptions property to the DelayCreation member. Note that we do not set the
DecodePixelWidth or DecodePixelHeight properties here, because this code example is
setup for initializing the full-size images in our gallery example.

Additionally, note that, in this particular example, we initialize the Uri object using an
absolute file path, by passing the Absolute member of the UriKind enumeration into the
constructor. If you prefer to work with relative file paths, you can change this line to specify
a relative file path by passing the Relative member to the constructor instead:

bitmapImage.UriSource = new Uri(filePath, UriKind.Relative);

Returning to the end of the example now, we can see the call to the Freeze method, which
ensures that the BitmapImage object will be unmodifiable and in its most efficient state.
This line can be omitted if the images need to be modified later.

Finally, we call the EndInit method to signal the end of the
BitmapImage object initialization, set the BitmapImage object as the Source property
value of the Image object to return, and then return the Image object to the method caller.

Now that we've seen some tips on how to display our images more efficiently, let's
investigate how we might do the same for our application's textual output.

Enhancing the performance of textual output
WPF provides similar options for creating text as it does for drawing shapes; the more
versatile the output method, the easier it is to use, but the less efficient it is and vice versa.
The vast majority of us opt for the simplest, but least efficient, method of using the high-
level TextBlock or Label elements.

Improving Application Performance Chapter 11

[549]

While this doesn't typically cause us any problems when used in typical forms, there is
definitely room for improvement when displaying thousands of text blocks in a data grid,
or other collection control. If we require formatted text, we can utilize the more efficient
FormattedText object; otherwise, we can use the lowest-level method and the most
efficient Glyphs elements.

Let's look at an example:

<UserControl x:Class="CompanyName.ApplicationName.Views.TextView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Controls=
 "clr-namespace:CompanyName.ApplicationName.Views.Controls"
 Height="250" Width="325">
 <Grid ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Content="Quite Efficient" FontFamily="Times New Roman"
 FontSize="50" FontWeight="Bold" FontStyle="Italic"
 Foreground="Red" Margin="10,0,0,0" Padding="0" />
 <TextBlock Grid.Row="1" Text="More Efficient"
 FontFamily="Times New Roman" FontSize="50" FontWeight="Bold"
 FontStyle="Italic" Foreground="Black" Margin="10,0,0,0" />
 <Controls:FormattedTextOutput Grid.Row="2" Text="More Efficient" />
 <Glyphs Grid.Row="3" UnicodeString="Most Efficient"
 FontUri="C:\WINDOWS\Fonts\timesbi.TTF" FontRenderingEmSize="50"
 Fill="Black" OriginX="10" OriginY="45" />
 </Grid>
</UserControl>

Here, we have a View that has a Grid panel with four rows. The first row holds a Label
control, which although fairly efficient, is the least efficient of the textual output methods
shown here and, as we'll see soon, should only be used in very specific circumstances. On
it, we specify the FontFamily, FontSize, FontWeight, FontStyle, and Foreground
properties to define how its text should look.

The second row contains a TextBlock element, which is slightly more efficient, and, like
the Label element, we specify the FontFamily, FontSize, FontWeight, FontStyle, and
Foreground properties on it directly. It's worth noting that to result in the same visual
output, we don't need to set its Padding property to 0, which was required with the Label
control.

Improving Application Performance Chapter 11

[550]

In the third row, we have a custom FormattedTextOutput control that uses a
FormattedText object internally and is slightly more efficient still. As we'll see shortly, we
need to specify the relevant properties of this text object in code.

Finally, we see a Glyphs element in the fourth row and this represents the most efficient
method of outputting text in a WPF application. Note that when using this method of
textual output, we don't specify a font family by name, but instead set an exact font file
path to its FontUri property.

As we want to match the bold italic version of the Times New Roman font, we specifically
need to set the file path to that exact file. Therefore, we need to specify the timesbi.ttf
file, rather than the normal times.ttf version. Other than setting the font size to the
FontRenderingEmSize property and the margin to the OriginX and OriginY properties,
this class is fairly self-explanatory.

Before continuing, let's first take a look at the visual output of this View:

Let's now take a look at the code inside the FormattedTextOutput class:

using System.Globalization;
using System.Windows;
using System.Windows.Media;

namespace CompanyName.ApplicationName.Views.Controls

Improving Application Performance Chapter 11

[551]

{
 public class FormattedTextOutput : FrameworkElement
 {
 public static readonly DependencyProperty TextProperty =
 DependencyProperty.Register(nameof(Text), typeof(string),
 typeof(FormattedTextOutput), new FrameworkPropertyMetadata(
 string.Empty, FrameworkPropertyMetadataOptions.AffectsRender));

 public string Text
 {
 get { return (string)GetValue(TextProperty); }
 set { SetValue(TextProperty, value); }
 }

 protected override void OnRender(DrawingContext drawingContext)
 {
 DpiScale dpiScale = VisualTreeHelper.GetDpi(this);
 FormattedText formattedText = new FormattedText(Text,
 CultureInfo.GetCultureInfo("en-us"), FlowDirection.LeftToRight,
 new Typeface("Times New Roman"), 50, Brushes.Red,
 dpiScale.PixelsPerDip);
 formattedText.SetFontStyle(FontStyles.Italic);
 formattedText.SetFontWeight(FontWeights.Bold);
 drawingContext.DrawText(formattedText, new Point(10, 0));
 }
 }
}

The FormattedTextOutput class is a fairly simple affair, with a single Dependency
Property and its associated CLR wrapper and a single overridden base class method. One
very important point to note is our use of the AffectsRender member of the
FrameworkPropertyMetadataOptions enumeration to specify that changes to this
property need to cause a new rendering pass.

Typically, the Text property will be updated from any data binding after the OnRender
method is called by the UIElement base class. Without specifying this option, our class will
never output any data bound values. By specifying this option, we are, in fact, telling the
Framework to call the OnRender method again each time this property value changes.

In the overridden OnRender method, we first initialize a FormattedText object with basic
properties, such as the text to render, the current culture, and the color, size, and type of the
font to use. Additional style properties can be set using the various set methods that the
class exposes. Finally, we call the DrawText method of the DrawingContext object
specified by the drawingContext input parameter, passing in the FormattedText object
and the position to render it.

Improving Application Performance Chapter 11

[552]

Note that we can use data binding with all of these text rendering methods, so let's now
update our previous example to demonstrate this:

...
<Label Content="{Binding Text}" FontFamily="Times New Roman"
 FontSize="50" FontWeight="Bold" FontStyle="Italic" Foreground="Red"
 Margin="10,0,0,0" Padding="0" />
<TextBlock Grid.Row="1" Text="{Binding Text}"
 FontFamily="Times New Roman" FontSize="50" FontWeight="Bold"
 FontStyle="Italic" Foreground="Red" Margin="10,0,0,0" />
<Controls:FormattedTextOutput Grid.Row="2" Text="{Binding Text}" />
<Glyphs Grid.Row="3" UnicodeString="{Binding Text}" FontUri=
 "C:\WINDOWS\Fonts\timesbi.TTF" FontRenderingEmSize="50"
 Fill="Black" OriginX="10" OriginY="45" />
...

For this example, we can simply hardcode a value in our View Model:

namespace CompanyName.ApplicationName.ViewModels
{
 public class TextViewModel : BaseViewModel
 {
 public string Text { get; set; } = "Efficient";
 }
}

Although we can data bind when using all of these textual output methods, there are some
caveats to be aware of. We've just learned of one relating to the required metadata of the
Text property in our custom FormattedTextOutput class and there is another relating to
the Glyphs class.

It has a requirement that the UnicodeString property cannot be empty if the Indicies
property, which represents an alternative method of providing the text to render, is also
empty. Unfortunately, because of this requirement, attempting to data bind to the
UnicodeString property, as we did in our extended example, will result in a compilation
error:

Glyphs Indices and UnicodeString properties cannot both be empty.

To address this issue, we can simply provide a value for the FallbackValue property of
the Binding class, so that the Glyphs class can be rest assured that even if there is no data
bound value, its UnicodeString property will have a non-empty value.

Improving Application Performance Chapter 11

[553]

Note that setting the FallbackValue property to an empty string will result in the same
error being raised:

<Glyphs Grid.Row="3" UnicodeString="{Binding Text, FallbackValue='Data
 Binding Not Working'}" FontUri="C:\WINDOWS\Fonts\timesbi.TTF"
 FontRenderingEmSize="50" Fill="Black" OriginX="10" OriginY="45" />

There is one further issue regarding data binding; however, this time, it involves the
Content property of the Label class. Because the string type is immutable, each time a
data bound value updates the Content property, the previous string type will be
discarded and replaced with the new one.

Furthermore, if the default ContentTemplate element is used, it will generate a new
TextBlock element and discard the previous element each time the property string is
replaced. As a result, updating a data bound TextBlock is approximately four times
quicker than updating a Label control. Therefore, if we need to update our data bound text
values, we should not use a Label control.

In fact, each method of rendering text has its own purpose. The Label control should
specifically be used to label text fields in a form, and, in doing so, we can take advantage of
its access key functionality and its ability to reference a target control. The TextBlock
element is a general-purpose text output method that should be used the majority of the
time.

The FormattedText object should really only be used when we specifically want to format
some text in a particular way. It provides the ability to output text with a wide range of
effects, such as being able to paint the stroke and fill of the text independently and to
format particular ranges of characters within the rendered text string.

The Glyphs class extends the FrameworkElement class directly and is, therefore,
extremely light-weight and should be utilized when we need to recreate our text output
more efficiently than we can by using the alternative methods. Although the
FormattedText class can make use of lower, core level classes to render its output, the
most efficient way to render text is to use Glyphs objects.

Liking the linking
As you have already seen, each UI element that we use in our Views takes time to render.
Simply put, the fewer elements that we use, the quicker the View will be displayed. Those
of us that have used Hyperlink elements in our Views will already be aware that we
cannot display them on their own but, instead, have to wrap them inside a TextBlock
element.

Improving Application Performance Chapter 11

[554]

However, as each Hyperlink element is self-contained, with its own navigation URI,
content, and property options, we can actually display more than one of them in a single
TextBlock element. This will reduce the render time; therefore, the more TextBlock
elements that we can remove, the quicker it will become. Let's look at an example:

<ListBox ItemsSource="{Binding Products}" FontSize="14"
 HorizontalContentAlignment="Stretch">
 <ListBox.ItemTemplate>
 <DataTemplate DataType="{x:Type DataModels:Product}">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Name}" />
 <TextBlock Grid.Column="1"
 Text="{Binding Price, StringFormat=C}" Margin="10,0" />
 <StackPanel Grid.Column="2" TextElement.FontSize="14"
 Orientation="Horizontal">
 <TextBlock>
 <Hyperlink Command="{Binding ViewCommand,
 RelativeSource={RelativeSource
 AncestorType={x:Type Views:TextView}}}"
 CommandParameter="{Binding}">View</Hyperlink>
 </TextBlock>
 <TextBlock Text=" | " />
 <TextBlock>
 <Hyperlink Command="{Binding EditCommand,
 RelativeSource={RelativeSource
 AncestorType={x:Type Views:TextView}}}"
 CommandParameter="{Binding}">Edit</Hyperlink>
 </TextBlock>
 <TextBlock Text=" | " />
 <TextBlock>
 <Hyperlink Command="{Binding DeleteCommand,
 RelativeSource={RelativeSource
 AncestorType={x:Type Views:TextView}}}"
 CommandParameter="{Binding}">Delete</Hyperlink>
 </TextBlock>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Improving Application Performance Chapter 11

[555]

Here, we have a collection of Product objects that are data bound to a ListBox, with each
item displaying its name, price, and three commands in the form of Hyperlink objects.
Let's see what this looks like before continuing:

Focusing on the links now, our example uses nine UI elements per item to render these
three links. The StackPanel element keeps them altogether, with each Hyperlink object
having its own TextBlock element and a further two TextBlock elements to display the
pipe separator characters.

The Hyperlink objects are data bound to commands in the View Model and the
CommandParameter property is data bound to the whole Product object that is set as the
data source for each item. In this way, we will have access to the relevant Product instance
in the View Model when a link is clicked on.

While there is nothing wrong with this XAML, if we need to be more efficient, then we can
replace everything inside the StackPanel and the panel itself with the following
TextBlock element:

<TextBlock Grid.Column="2" TextElement.FontSize="14" Foreground="White">
 <Hyperlink Command="{Binding ViewCommand, RelativeSource={
 RelativeSource AncestorType={x:Type Views:TextView}}}"
 CommandParameter="{Binding}">View</Hyperlink>
 <Run Text=" | " />
 <Hyperlink Command="{Binding EditCommand, RelativeSource={
 RelativeSource AncestorType={x:Type Views:TextView}}}"
 CommandParameter="{Binding}">Edit</Hyperlink>
 <Run Text=" | " />
 <Hyperlink Command="{Binding DeleteCommand, RelativeSource={
 RelativeSource AncestorType={x:Type Views:TextView}}}"
 CommandParameter="{Binding}">Delete</Hyperlink>
</TextBlock>

As you can see, we now host all three Hyperlink objects inside a single TextBlock
element and have replaced the two TextBlock elements that displayed the pipe characters
with Run objects. Using the Run class is moderately more efficient than using one
TextBlock element inside another.

Improving Application Performance Chapter 11

[556]

Now, we need only render six elements per item to produce the links, including using two
more efficient elements, rendering three elements fewer per item. However, if we had 1,000
products, we would end up rendering 3,000 fewer UI elements, with 2,000 more efficient
replacements, so it is easy to see how this can soon add up to some real efficiency savings.

In this example, we could make further improvements, simply by removing the line under
each link. Bizarrely, we can save up to 25 percent of the rendering time taken to render our
Hyperlink elements if we remove their underlines. We can do this by setting their
TextDecorations property to None:

<Hyperlink ... TextDecorations="None">View</Hyperlink>

We could extend this idea further, by only displaying the underline when the user's mouse
cursor is over the link. In this way, we still give the visual confirmation that the link is, in
fact, a link, but we save the initial rendering time:

<Style TargetType="{x:Type Hyperlink}">
 <Setter Property="TextDecorations" Value="None" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="TextDecorations" Value="Underline" />
 </Trigger>
 </Style.Triggers>
</Style>

Let's now turn our attention to a number of performance improvements that we can make
when data binding in our applications.

Data binding
The simplest improvement in performance when data binding can be obtained by simply
setting the Binding.Mode property correctly. In order to make data binding possible, the
Framework attaches handlers to listen out for changes to our data bound properties.

For two-way bindings, event handlers will be attached to the PropertyChanged event of
the INotifyPropertyChanged interface to listen to changes in our data Model objects or
View Models and to various other XxxChanged events in the relevant binding target
controls to listen to UI-based property changes.

Improving Application Performance Chapter 11

[557]

When we only require one-way bindings, we can save some computing resources by setting
the Mode property of the Binding class to the appropriate member of the BindingMode
enumeration. If you remember, when a data bound property is for display purposes only,
we should set its Mode property to OneWay, and when we have no need to update an
editable field from the View Model, we should set its Mode property to the
OneWayToSource member.

In doing this, we cut down the number of event handlers listening for changes and,
therefore, free up resources to be used where they are actually needed. Once again, the
effect of doing this on one binding alone would be negligible, but if we practice this on
every relevant binding, then the efficiency improvement will start to make a difference.

Another good practice to get into is to set the FallbackValue property of the Binding
class on each binding that we declare. As mentioned in Chapter 4, Becoming Proficient with
Data Binding, doing this will stop the WPF Framework from performing a lookup of the
default value of the target Dependency Property when there are data binding errors and
will prevent trace statements from being generated and output.

Likewise, setting the TargetNullValue property is similar to setting the FallbackValue
property in that it is slightly more efficient than not setting it. Again, doing this on a single
binding will have a negligible effect; however, if we do this on every binding, it will free up
CPU cycles for rendering or other required processes.

In fact, the best binding-related way to increase the performance of our applications is to
simply fix any data binding errors that we may have. Each time a binding cannot be
resolved, the Framework will perform a number of checks, using up valuable resources, as
mentioned previously in this section. Therefore, keeping the Output window free of
binding errors is a must when it comes to performance.

Registering Dependency Properties
As we saw in the Using the right controls for performance section earlier in this chapter, we
need to be careful when setting the metadata for our Dependency Properties. Incorrectly
specifying the framework metadata while registering our Dependency Properties can lower
performance by forcing the layout system to unnecessarily perform additional layout
passes.

In particular, we need to be careful when specifying any of the AffectsMeasure,
AffectsArrange, AffectsParentMeasure, AffectsParentArrange, or
AffectsRender members of the FrameworkPropertyMetadataOptions enumeration
and ensure that they are actually required.

Improving Application Performance Chapter 11

[558]

Likewise, if we specify the Inherits member of the
FrameworkPropertyMetadataOptions enumeration when registering our Dependency
Property, we are effectively increasing the length of time that invalidation will take on the
property. As such, we should ensure that this particular metadata member is only used
when it is really necessary.

One last metadata option that can improve the performance of the application is the
SubPropertiesDoNotAffectRender member. If the type of our Dependency Property is
a reference type, we can specify this enumeration member to stop the layout system from
checking for changes to all sub-properties of the object, which it would otherwise do by
default.

While we may need to call the OverrideMetadata method of the DependencyProperty
class to override the metadata of the pre-existing properties in the .NET Framework, this
comes with a small performance impact. When setting the metadata for our own custom
Dependency Properties, we should always use the appropriate Register or
RegisterAttached method to specify our requirements, as this offers far better
performance.

Likewise, when registering our custom Dependency Properties, we should also set their
default values using the relevant Register or RegisterAttached method as they are
created, rather than initializing each instance individually in a constructor, or by using
some other method.

Binding to collections
As you are most probably aware, when dealing with collections that will be updated in a
WPF application, we tend to prefer using the generic ObservableCollection<T> class.
The reason for this is because this class implements the INotifyCollectionChanged
interface, which notifies listeners of changes to the collection, such as adding, removing, or
clearing items.

What we may not realize is the incredible performance improvement that we get from
using this class to hold our data collections. When comparing this with the generic
List<T> class, for example, we note that it does not automatically raise any collection
changed event. In order to enable the View to display the updated collection, we need to
reset it as the ItemsSource property value of the relevant collection control.

Improving Application Performance Chapter 11

[559]

However, each time that the ItemsSource property is set, the data bound collection
control will clear its current list of items and completely regenerate them again, which can
be a time-consuming process. So, to add a single item to an ObservableCollection<T>
takes approximately 20 milliseconds to render, but to reset the ItemsSource property
value could take over 1.5 seconds.

However, if our collection is immutable and we will not be altering it in any way, we do not
need to use the generic ObservableCollection<T> class, as we have no need for its
change handlers. Rather than wasting resources on unused change handlers, we can use a
different type of collection class.

While there is not a preferred type of collection to use when data binding immutable
collections to UI controls, we should try to avoid using the IEnumerable class as the
collection container. This type cannot be used directly by the ItemsControl class, and,
when it is used, the WPF Framework will generate a generic IList<T> collection to wrap
the IEnumerable instance and this can also negatively affect performance.

In the next few sections, we'll explore other ways in which we can display large collections
efficiently.

Shrinking data objects
Quite often, our applications will have fairly sizable data objects, with dozens, or even
hundreds, of properties. If we were to load all of the properties for each data object when
we have thousands of them, our application would slow down and possibly even run out
of memory.

We might think that we can save on RAM by simply not populating all of the property
values; however, if we use the same classes, we'll soon find that even the default or empty
values for these properties may consume too much memory. In general, and with a few
exceptions, unset properties take the same amount of RAM as set properties.

If our data model object has a very large number of properties, one solution would be to
break it down into much smaller pieces. For example, we could create a number of smaller,
sub product classes, such as ProductTechnicalSpecification, ProductDescription,
ProductDimension, ProductPricing, and more.

Improving Application Performance Chapter 11

[560]

Rather than building one giant View to edit the whole product, we could then provide a
number of smaller Views, perhaps even accessible from different tabs within the same
View. In this way, we would be able to just load the ProductDescription objects for the
user to select from and then load the individual sections of the product in each sub View.

There is a significant performance increase to be gained by this method, as binding to a
single object with a great many properties can take up to four times longer than binding to
a great many objects with fewer properties.

One alternative to breaking our data objects into smaller pieces would be to use the concept
of thin data objects. For example, imagine that our Product class had dozens of properties
and that we had thousands of products. We could create a ThinProduct class that contains
only the properties that would be used to identify the full data object to load when selected
and those displayed in the product collection.

In this case, we might simply need two properties in our ThinProduct class, a unique
identification property, and a display name property. In this way, we can reduce the
memory footprint of our products by a factor of 10 or even more. This means that they can
be loaded from the database and displayed in a fraction of the time of the full Product
objects.

In order to facilitate easy transferal between the Product and ThinProduct classes, we can
add constructors into each class that accepts the other type and updates the relevant
properties:

using System;

namespace CompanyName.ApplicationName.DataModels
{
 public class ThinProduct : BaseDataModel
 {
 private Guid id = Guid.Empty;
 private string name = string.Empty;

 public ThinProduct(Product product)
 {
 Id = product.Id;
 Name = product.Name;
 }

 public Guid Id
 {
 get { return id; }
 set { if (id != value) { id = value;
 NotifyPropertyChanged(); } }

Improving Application Performance Chapter 11

[561]

 }

 public string Name
 {
 get { return name; }
 set { if (name != value) { name = value;
 NotifyPropertyChanged(); } }
 }

 public override string ToString()
 {
 return Name;
 }
 }
}

The properties in this ThinProduct class basically mirror those from the Product class
that we saw earlier, but only the ones that are used to identify each instance. A constructor
is added that takes an input parameter of type Product to enable easy transferal between
the two. A similar constructor is added to the Product class, but takes an input parameter
of type ThinProduct:

public Product(ThinProduct thinProduct) : this()
{
 Id = thinProduct.Id;
 Name = thinProduct.Name;
}

The idea is that we have a View Model that displays a large number of products and in
code, we actually load a large number of these much lighter ThinProduct instances. When
the user selects one of the products to view or edit, we use the identification number of the
selected item to then load the full Product object that relates to that identifier.

Given a base collection of these ThinProduct instances in a property named Products, we
could achieve this as follows. First, let's bind our collection to a ListBox control:

<ListBox ItemsSource="{Binding Products}"
 SelectedItem="{Binding Products.CurrentItem}" ... />

When the user selects a product from the list, the collection's CurrentItem property will
hold a reference to the selected item. If we attach a handler to the collection's
CurrentItemChanged delegate when it is first loaded, we can be notified when the item is
selected.

Improving Application Performance Chapter 11

[562]

At that point, we can load the full Product object using the identifier from the selected
ThinProduct instance and output the associated feedback to the user:

private void Products_CurrentItemChanged(ThinProduct oldProduct,
 ThinProduct newProduct)
{
 GetDataOperationResult<Product> result =
 await Model.GetProductAsync(newProduct.Id);
 if (result.IsSuccess) Product = result.ReturnValue;
 else FeedbackManager.Add(result, false);
}

In the next section, we'll find out how we can display our large collections more efficiently
using collection controls, rather than having to break up our large classes into smaller
classes or create associated thin data objects.

Virtualizing collections
When we display large numbers of items in our collection controls, it can negatively affect
the application's performance. This is because the layout system will create a layout
container, such as a ComboBoxItem in the case of a ComboBox, for example, for every item
in the data bound collection. As only a small subset of the complete number of items is
displayed at any one time, we can take advantage of virtualization to improve the situation.

UI virtualization defers the generation and layout of these item containers until each item is
actually visible in the relevant collection control, often saving on large amounts of
resources. We can take advantage of virtualization without doing anything at all if we use
ListBox or ListView controls to display our collections, as they use it by default.

Virtualization can also be enabled in ComboBox, ContextMenu, and TreeView controls,
although it will have to be done manually. When using a TreeView control, we can enable
virtualization by simply setting the
VirtualizingStackPanel.IsVirtualizing Attached Property to True on it:

<TreeView ItemsSource="{Binding Items}"
 VirtualizingStackPanel.IsVirtualizing="True" />

Improving Application Performance Chapter 11

[563]

For other controls that use the StackPanel class internally, such as the ComboBox and
ContextMenu controls, we can enable virtualization by setting an ItemsPanelTemplate
element hosting an instance of the VirtualizingStackPanel class with its
IsVirtualizing property set to True to its ItemsPanel property:

<ComboBox ItemsSource="{Binding Items}">
 <ComboBox.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel IsVirtualizing="True" />
 </ItemsPanelTemplate>
 </ComboBox.ItemsPanel>
</ComboBox>

Apart from setting the IsVirtualizing property to False, there are a few other reasons
why UI virtualization may not work. One case is when item containers have manually been
added to an ItemsControl object or one of its derived controls. Another case is when the
item containers are of different types.

The final reason why virtualization may not work is not so obvious and relates to the
CanContentScroll property of the ScrollViewer class. This is an interesting property
that specifies whether the ScrollViewer in a collection control will scroll its items in
logical units or physical units. The default value is False, which smoothly scrolls in terms
of physical units.

Physical units relate to the device-independent pixels that WPF works with, while logical
units relate to the widths or heights of the collection items, depending on the orientation of
the control. As the default value of the CanContentScroll property is False, this will
need to be set to True to enable virtualization. This is so that scrolling is performed item by
item and not pixel by pixel.

When virtualization is employed in a collection control that extends the ItemsControl
class and the user scrolls, new item containers are created for the newly visible items and
the containers for the items that are no longer visible are disposed of.

In version 3.5 of the .NET Framework, an optimization of the virtualization system was
introduced. Container recycling enables the collection control to reuse the item containers,
instead of creating new ones and disposing of old ones as the user scrolls. This offers an
additional performance benefit and can be enabled by setting the VirtualizationMode
Attached Property to a value of Recycling:

<TreeView ItemsSource="{Binding Items}"
 VirtualizingStackPanel.IsVirtualizing="True" />
 VirtualizingStackPanel.VirtualizationMode="Recycling" />

Improving Application Performance Chapter 11

[564]

One further optimization that WPF provides us with is deferred scrolling. Normally,
scrolling in a collection control continuously updates the UI. However, if our data items or
their item containers have several layers of visuals that define them and scrolling is slow,
we can opt to defer the UI update until scrolling has finished.

In order to enable deferred scrolling on a collection control, we need to set the
ScrollViewer.IsDeferredScrollingEnabled Attached Property to True. Although
we don't generally use ScrollViewer elements in XAML directly, we can also attach this
property to collection controls that host a ScrollViewer element in their control
templates:

<ListBox ItemsSource="{Binding Items}"
 ScrollViewer.IsDeferredScrollingEnabled="True" />

We've now investigated performance improvements that we can make with computer
hardware, resources, correct control selection, methods of drawing and displaying images,
outputting text, linking, data binding, minimizing memory footprints, and data
virtualization. There is just one more essential area to look at, that is, events, so let's look at
that next.

Handling events
One of the most common causes of memory leaks appearing in an application is the failure
to remove event handlers once they are no longer needed. When we attach an event
handler to an object's event in the usual way, we are effectively passing that object a
reference to the handler and creating a hard reference to it.

When the object is no longer needed and could otherwise be disposed of, the reference in
the object that raises the event will prevent that from occurring. This is because the garbage
collector cannot collect an object that can be accessed from any part of the application code.
In the worst-case scenario, the object being kept alive may contain numerous other objects
and, therefore, inadvertently keep them alive as well.

The problem with this is that keeping objects alive after they are no longer needed will
unnecessarily increase the memory footprint of the application, in some cases, with
dramatic and irreversible consequences, leading to an OutOfMemoryException being
thrown. It is, therefore, essential that we detach our event handlers from the events that
they are subscribed to in objects that we have no further use for before trying to dispose of
them.

Improving Application Performance Chapter 11

[565]

There is, however, an alternative method that we can use to avoid this situation. In the
.NET Framework, there is a WeakReference class and it can be used to remove the hard
references caused by attaching event handlers to events using the traditional method.

The basic idea is that the class that raises the event should maintain a collection of
WeakReference instances and add to it each time another class attaches an event handler
to the event. Let's now create a new WeakReferenceActionCommand class from our
ActionCommand class from earlier to use this WeakReference class:

using System;
using System.Collections.Generic;
using System.Windows.Input;

namespace CompanyName.ApplicationName.ViewModels.Commands
{
 public class WeakReferenceActionCommand : ICommand
 {
 private readonly Action<object> action;
 private readonly Predicate<object> canExecute;
 private List<WeakReference> eventHandlers = new List<WeakReference>();

 public WeakReferenceActionCommand(Action<object> action) :
 this(action, null) { }

 public WeakReferenceActionCommand(Action<object> action,
 Predicate<object> canExecute)
 {
 if (action == null) throw new ArgumentNullException("The action
 input parameter of the WeakReferenceActionCommand constructor
 cannot be null.");
 this.action = action;
 this.canExecute = canExecute;
 }

 public event EventHandler CanExecuteChanged
 {
 add
 {
 eventHandlers.Add(new WeakReference(value));
 CommandManager.RequerySuggested += value;
 }
 remove
 {
 if (eventHandlers == null) return;
 for (int i = eventHandlers.Count - 1; i >= 0; i--)
 {
 WeakReference weakReference = eventHandlers[i];

Improving Application Performance Chapter 11

[566]

 EventHandler handler = weakReference.Target as EventHandler;
 if (handler == null || handler == value)
 {
 eventHandlers.RemoveAt(i);
 }
 }
 CommandManager.RequerySuggested -= value;
 }
 }

 public void RaiseCanExecuteChanged()
 {
 eventHandlers.ForEach(
 r => (r.Target as EventHandler)?.Invoke(this, new EventArgs()));
 }

 public bool CanExecute(object parameter)
 {
 return canExecute == null ? true : canExecute(parameter);
 }

 public void Execute(object parameter)
 {
 action(parameter);
 }
 }
}

We start by adding a declaration of our new collection containing objects of
the WeakReference type to the pre-existing fields. The two constructors remain
unchanged, but when attaching handlers in the CanExecuteChanged event, we now wrap
the event handling delegate in a WeakReference object and add it to the collection. We still
need to pass the references to the handlers that get attached through to the
RequerySuggested event of the CommandManager class as before.

When an event handler is removed, we first double-check that our WeakReference
collection is not null and simply return control to the caller if it is. If not, we use a for loop
to iterate through the collection in reverse so that we can remove items without affecting
the loop index.

We attempt to access the actual event handler from the Target property of each
WeakReference object in turn, converting it to the EventHandler base type using the as
keyword. We then remove the WeakReference instance if its event handler reference is
either null or it matches the handler being removed.

Improving Application Performance Chapter 11

[567]

Note that a null reference in the Target property would be the result of an event handler
from a class that has been disposed of by the garbage collector. As before, we then also
detach the event handler from the CommandManager.RequerySuggested event.

Finally, we need to update our RaiseCanExecuteChanged method to use our new
collection of WeakReference objects. In it, we again iterate through each instance in the
collection using our ForEach Extension Method and after checking whether its Target
property is null by using the null conditional operator, call it using the delegate's Invoke
method.

So, the idea here is that we no longer directly hold on to any references to the attached
event handlers and are, therefore, free to dispose of those classes at any point without fear
of them being kept alive unnecessarily.

Summary
In this chapter, we explored a number of options that we can use to increase the
performance of our WPF applications. As we have now seen, this is more a case of making
a large number of little changes to gain an overall noticeable performance benefit.

We saw that we can utilize the graphics rendering power of our computer's graphics card
and declare our resources more efficiently. We investigated ways to improve our
application's performance using lighter-weight UI controls and more efficient methods of
rendering drawings, images, and text. We also learned how to data bind, display large
objects and collections, and handle events with improved performance.

In the next chapter, we will investigate the final requirement for all professional
applications, that is, deployment. In it, we will first cover the older method, using the
Windows Installer software, and then progress to investigate the more common and up-to-
date method, that is, using ClickOnce functionality.

12
Deploying Your Masterpiece

Application
So, we've designed and constructed our application framework, resources, and managers,
added our Models, Views, and View Models, and after completing the development of our
application, now it's time for deployment. In this chapter, we'll be looking at an overview of
the three main methods of deploying WPF applications.

We'll start by investigating the original Windows Setup Project method, move on to
discover the newer InstallShield Limited Edition Project method, and then progress to
examine the recommended ClickOnce technology.

Installing Windows applications
In days gone by, creating a Setup and Deployment project in Visual Studio was a
confusing and complicated process. However, as with just about everything in .NET,
successive updates over the years have resulted in ever-improved creation methods for
these projects.

Deploying Your Masterpiece Application Chapter 12

[569]

Introducing the Setup Project
The latest deployment technologies are simpler to use and provide an easily
understandable method of performing the same steps as the earlier technologies. However,
in older versions of Visual Studio, we might only have access to the older Visual Studio
Installer project types, so let's first investigate the standard Setup Project:

After adding a Setup Project to the solution, a page opens up showing the file system on
the target computer. On this File System Editor page, we can specify what we would like
to install and where. The page is divided into two, with a tree View of the folders to be
installed on the users' computers on the left and their folder contents on the right. By
default, the left pane contains the Application, Desktop, and Program Files folders.

If we would prefer to use other predefined locations, such as the Fonts, Favorites, or the
Common Files folders, for example, then we can right-click on the background of these
panes and select the Add Special Folder option. Typically, we would add a standard folder
with our company's name into the User's Programs Menu folder and add a further
folder named after our application into that.

Deploying Your Masterpiece Application Chapter 12

[570]

However, if we want to install our application as a 64 bit application, then we'll need to use
this option to add the 64 bit Program Files folder to install into. To do so, we need to
right-click on the File System on Target Machine item at the top of the tree View, select the
Add Special Folder option, and then select the Program Files (64-bit) Folder item.

Note that we should only perform this step if we want to have a 64 bit installation. We then
need to set the project output of our startup project to the folder in the left pane, which
represents our installation folder, whether 32 or 64 bit.

We'll need to right-click on that folder and select the Add option and then the Project
Outputs option from the contextual menu, and then select the Primary Output option that
relates to our CompanyName.ApplicationName project. After doing so, we'll see a copy of
the executable and other dependent files from its bin folder being included in our selected
application folder.

Next, we can create a shortcut to our application on the machine that it was installed on by
right-clicking the icon for the project output in the right pane and selecting the Create
Shortcut to Primary output from CompanyName.ApplicationName (Active) option from
the menu.

We need to give it the same name as our application and set an icon for it, which we can do
in its Properties window. We can then click and drag, or copy and paste it to the User's
Desktop folder, or to whichever folder we want the shortcut to appear in.

In addition to the executable and shortcut files, we can right-click a folder in the left pane
and select the Add option and then the Folder and/or File options from the contextual
menu and choose any other files that we may need to install on the user's computer. Once
we have finished configuring the File System Editor, we can right-click on the project node
in the Solution Explorer and select another page to edit from the View menu.

The Registry Editor page is next, and it enables us to make entries in the Windows Registry
of the host computer. The left window pane acts as the registry View of the target
computer, and we can use it in the same way as the Registry Editor to add new keys. This
page also allows us to import registry keys from a .reg file if we right-click on an empty
space and select Import.

The File Types Editor page follows in the View menu and enables us to associate any
custom file types that we may have created with our application. In doing so, after
installation, Windows will then open our application whenever a file of one of the types
specified on this page are clicked.

Deploying Your Masterpiece Application Chapter 12

[571]

The Setup Project enables us to display a number of default dialogs during installation,
such as welcome, confirmation, and completion dialogs. It also provides the ability to
reorder or remove these default dialogs, or add new ones from a predefined list. Each
dialog provides an image field and different options, such as whether a progress bar should
be displayed, or what text to display at different stages of the installation. This is achieved
on the User Interface page.

The Custom Actions Editor page enables us to specify assemblies that contain code in a
particular form, that can be run after the application has been installed. These actions could
be anything, such as popping up a small form and providing the user with some
configuration options, or simply opening a particular web page after installation has
completed.

The final option in the View menu of the Setup Project opens the Launch Conditions
Editor page. Here, we can specify prerequisite conditions that must be satisfied in order for
the application to be installed. For example, we might require a particular version of the
.NET Framework to be installed, or the host computer to have a particular registry key
setting.

Once the project pages have all been appropriately completed, we just need to build the
Setup and Deployment project to generate the setup files. However, we need to ensure that
we build it correctly, dependent upon the selections that we made on the File System
Editor page.

For example, if we wanted to have a number of setup projects, let's say including 32 bit and
64 bit installations, then we need to only build the 32 bit version of the Setup Project in the
32 bit solution platform and only build the 64 bit version in the 64 bit solution platform.

We can do this in the Configuration Manager in Visual Studio, which we can open from
the last option in either the solution configuration or solution platform drop-down controls.
If the x86 and x64 solution platforms do not already exist, we can add them by selecting
the <New...> option from the solution platform drop-down control in the Configuration
Manager dialog window.

Deploying Your Masterpiece Application Chapter 12

[572]

To add the new solution platforms in the New Solution Platform dialog that opens, type
either x86 or x64 in the Type or select the new platform field, select the <Empty> option
from the Copy settings from drop-down control, and ensure that the Create new project
platforms tick box is checked.

Once we have these two solution platforms, we can select them one at a time in the Active
solution platform drop-down control in the Configuration Manager dialog window and
tick and untick the relevant setup projects.

Here is a screenshot of the x86 solutions selected:

Deploying Your Masterpiece Application Chapter 12

[573]

Here is a screenshot of the x64 solutions selected:

Note that we must select Release in the solution configuration drop-down and then build
our project to generate the setup files. If we have set up our build configuration correctly,
then building the x86 solution platform will generate the 32-bit setup files, and building the
x64 solution platform will generate the 64 bit setup files.

It can be useful to uncheck the Build tick boxes for our deployment projects on all solution
platforms when the Active solution configuration is set to Debug. Doing this will stop the
deployment files from being regenerated every time that the solution is built while
debugging and will therefore save time during any future development.

Deploying Your Masterpiece Application Chapter 12

[574]

Working with the InstallShield Limited Edition
project
To add a Setup Project in a modern version of Visual Studio, we need to select the
InstallShield Limited Edition Project from the Setup and Deployment project type in the
Other Project Types category in the left-hand pane of the Add New Project dialog
window:

Note that this project type is already included with all paid versions of Visual Studio, but
those who are using a free version may be directed to a website to download this
functionality upon selection of the project type.

Deploying Your Masterpiece Application Chapter 12

[575]

Once it's installed and the project has been successfully added, a help wizard, or a Project
Assistant window as InstallShield likes to call it, will be opened in Visual Studio to aid the
process of configuring the installation project. It walks us through the various tasks that we
may need to perform when creating our installer, page by page:

Each page is divided into two window panes; the right pane contains the various fields that
we will edit to set our required specifications for the deployment, and the left pane contains
additional options and contextual help topics, relevant to each page.

The first page of the Project Assistant is the Application Information page, where we can
provide general information about the application, such as the company name and website,
the application name and version, and the icon to display with the application.

The Installation Requirements page enables us to select one or more particular operating
systems that our application is compatible with. In addition to this, we can also specify that
our application has a dependency from a pre-existing list of third-party software, such as
Adobe Reader, various versions of the .NET Framework, and a number of Microsoft
products.

While this list is short, it does contain the most likely prerequisite software titles. However,
there are a couple of additional options, one of which enables us to create custom
installation requirements. Upon clicking on this option, the System Search Wizard opens
and lets us search for additional installation requirements, either by folder path, registry
key, or by .ini file value, and enables us to choose what happens if the new requirement is
not met during the installation process.

Deploying Your Masterpiece Application Chapter 12

[576]

The Application Files page is next, and in it, we can add any required application files to
the installation. The page is divided into two, with a tree View of the folders to be installed
on the users' computers on the left and the folder contents on the right. The left pane
contains a list of the most commonly used predefined folders, such as the App Data,
Common, and Program Files folders.

If we need to use other predefined locations, such as the Desktop, Favorites, or the My
Pictures folders, for example, then we can right-click on an item in this pane and select
the Show Predefined Folder option. In fact, if we want to install our application as a 64 bit
application, then we'll need to use this option to add the 64 bit Program Files folder, in a
similar way to the Setup Project.

In order to do this, we can right-click on the Destination Computer item at the top of the
tree View, select the Show Predefined Folder option, and then select the
ProgramFiles64Folder item. We would then need to set the project output of our startup
project to the folder in the left pane that represents our installation folder. Note that it will
be suffixed with [INSTALLDIR] and, in our case, will be named ApplicationName.

We should click the Add Project Outputs button and select the Primary Output option that
relates to our CompanyName.ApplicationName project to include a copy of the DLLs and
other dependent files from its bin folder in the deployment. We can right-click the added
output item to select further properties if required, or if we are using COM objects in our
application.

Next up is the Application Shortcuts page, where we can control which custom shortcuts
the installation will include on the users' computer. Note that default shortcuts will
automatically be added for the executable files that we have specified, but this page enables
us to delete these, as well as add new ones, or even specify uninstallation shortcuts or
alternative icons to use.

The Application Registry page follows and enables us to make entries in the Windows
Registry of the computer that our application is being installed on. The left window pane
mirrors the registry View of the destination computer and we can use it in the same way to
add new keys. This page also allows us to import registry keys from a .reg file and open
the registry editor for the source computer.

The last page is the Installation Interview page, where we can specify which dialog screens
are displayed to the user during the installation. Here, we can optionally upload an End
User License Agreement file in the Rich Text Format (RTF) file format to require the user to
agree to.

Deploying Your Masterpiece Application Chapter 12

[577]

Additionally, we can prompt the user to enter their username and company name and
provide them with options to select the installation location and whether the application
should open after the installation is complete. We can also specify custom images to be
displayed in these dialog windows from this page.

Once the project assistant pages have all been appropriately completed, we just need to
build the setup and deployment project to generate the setup files. However, we need to
ensure that we build it correctly, dependent upon the selections that we made in the project
assistant.

When using and focusing the InstallShield Limited Edition Project in the Solution
Explorer in Visual Studio, we get an extra InstallShield LE menu item, and in it, we can
find an Open Release folder... option. Clicking this option will open a folder window
showing the setup project folder, in which we can find the installation files to distribute to
the users:

Utilizing ClickOnce functionality
ClickOnce is an application deployment technology that enables us to deploy applications
that can be installed, run, and updated with minimal interaction from the end user. In fact,
the name ClickOnce comes from the ideal scenario, where each application could be
installed with a single click.

Each ClickOnce application is deployed into its own self-contained area on the host
computer, with no access to other applications, rather than in one of the standard program
files folders that the other deployment technologies use. Furthermore, they only grant the
exact security permissions required by the application and so, can generally also be
installed by non-administrative users.

Deploying Your Masterpiece Application Chapter 12

[578]

Another benefit of using ClickOnce is that it enables applications to be installed either from
a web page, a network folder, or from physical media. We can also specify that applications
installed using ClickOnce should check for updates at regular periods and can be easily
updated by the end user, without requiring an administrator to be present.

ClickOnce deployments contain an application manifest and a deployment manifest. The
application manifest contains details of the application, such as its dependencies, required
security permissions, and the location where updates will be available. The deployment
manifest contains details of the deployment, such as the location of the application manifest
and the target version of the application.

ClickOnce is now the preferred method of deploying applications and is built right into the
project properties of our startup project. We can open the properties window by either
right-clicking on the CompanyName.ApplicationName project in the Solution Explorer
and selecting the Properties option, by opening the project node and double-clicking on the
Properties item, or by selecting the project node and pressing the Alt + Enter keys on the
keyboard together.

In the project properties window, we can find the ClickOnce configuration fields in the
Publish tab. In this tab, we can set the location of the publishing folder to a network shared
folder or FTP server. This represents the location that files will be published to. Optionally,
we can also specify the location that users will install the application from, if that will be
different.

We can dictate that the installation mode should make the application available online only,
like a web application, or offline as well, like a typical desktop application. In this section,
we also have the Application Files button, which opens a dialog window where we can
specify which additional files to include in the deployment.

All files from the solution that currently get built into the bin folder will be included by
default, but we can exclude them if we prefer. Alternatively, we can add new files from the
Solution Explorer by setting their Build Action to Content in the Properties window. We
can also specify whether any executable files are prerequisites, or whether any other file
types are data files. However this is set for us automatically and we do not need to make
changes here unless we have specific requirements.

Next, we see the Prerequisites button, which opens a dialog window that enables us to
create a setup program to install any prerequisite components that we may have, such as
the .NET Framework and the Windows Installer software. If the users' computers do not
already have the required prerequisites installed, we can specify where the installer should
access them from. This dialog is also automatically populated according to the
requirements of the application.

Deploying Your Masterpiece Application Chapter 12

[579]

In order to specify that the installed applications should check for updates, we can tick the
The application should check for updates checkbox in the dialog that opens after clicking
the Updates button in the Publish tab. We can also specify whether this occurs before or
after the application starts, or after a certain period of time.

In the Application Updates dialog window, we can also stipulate that the application
should be mandatorily updated to a particular version by ticking the Specify a minimum
required version for this application checkbox and setting the version. Additionally, we
can specify a further location that updates can be accessed from, if it is different to the
publish location.

Finally, in the Install Mode and Settings section, we come to the Options button, which
opens the Publish Options dialog window, where we can specify details such as the
publisher and product names, and deployment and manifest settings, and associate our
applications with our custom file types so that it will open when those file types are clicked.

The Deployment options enable us to specify a web page that users can use to download
and install our ClickOnce application from, although if we enter default.html, we can
use the default page that is generated for us. We can also specify whether the web page
should automatically open, or whether the uploaded files should be verified after
publishing the application.

The final section in the Publish tab is the Publish Version section, where we can specify
the current version of the application. Rather than update this manually each time we
publish, we can optionally tick the Automatically increment revision with each publish
checkbox to update the revision for us.

In this section, we have two publishing options. The Publish Wizard button opens a multi-
page dialog window that walks us through many of the more essential options described
previously and ends with publishing the application. While this is useful for the first time
that we publish the application, we tend to use the other option, the Publish Now button,
after that, which simply publishes the application.

Securing deployments
On the Security tab of the project properties window, we can specify the security
permissions that our application requires. To do so, we can tick the Enable ClickOnce
security settings checkbox and select whether our application is a full or partial trust
application.

Deploying Your Masterpiece Application Chapter 12

[580]

For a typical desktop application, it is common to specify that it is a full trust application,
but otherwise we can specify just the trust level that we require. Note that unless the
application publisher is set as a trusted publisher on the end user's computer, they might be
required to grant any required permissions during installation.

If we specify that our application is a partial trust application, then we can either select
from pre-configured zones that contain specific groups of permissions, or select custom
permissions, in which case, we can manually specify our required permissions directly in
the application manifest file.

Note that even if we have specified our application as a partial trust application, we usually
have full trust when developing. In order to develop using the same permissions that our
application requires and therefore see the same errors as the users, we can click the
Advanced button and tick the Debug this application with the selected permission set
checkbox.

On the Signing tab of the project properties window, we can optionally digitally sign the
ClickOnce manifests by ticking the Sign the ClickOnce manifests checkbox. If we have a
valid certificate that has been persisted in the computer's certificate store, then we can select
it to sign the ClickOnce manifests using the Select from Store button.

Alternatively, if we have a Personal Information Exchange (PFX) file, we can sign the
manifests with it by clicking on the Select from File button and selecting it in the file
explorer that opens. If we don't currently have a valid certificate, we can optionally create
one for testing purposes by clicking on the Create Test Certificate button.

However, note that a test certificate should not be deployed with a production application
as they do not contain verifiable information about the publisher. When installing the
ClickOnce application with a test certificate, users will be informed that the publisher
cannot be verified and asked to confirm whether they really want to install the application.
For the peace of mind of the end users, a real certificate should be used and a copy stored in
their Trusted Publishers Certificate Store.

We can also optionally sign the assembly by ticking the Sign the assembly checkbox and
selecting a Strong Name Key (SNK) file from the associated drop-down control. If we
haven't previously selected one, we can add a new one from the same drop-down control.

This completes the summary of the configuration pages used for a ClickOnce deployment.
They provide practically the same settings as the other deployment technologies, except
those to do with the location of the installed files and the security permissions that may be
required to install. Let's now look at how we can safely store files on the host computer in
non-full trust applications.

Deploying Your Masterpiece Application Chapter 12

[581]

Isolating storage
One of the reasons why ClickOnce can be installed directly by the end users without the
need for administrator assistance is because it is installed into a self-contained ecosystem
that's separate from all other programs and, in general, isolated from the rest of the user's
computer.

When we need to store data locally, we can run into security problems if we have not
specified our application as a full trust application. In these situations, we can take
advantage of isolated storage, which is a data storage mechanism that abstracts the actual
location of the data on the hard drive, which remains unknown to both users and
developers.

When we use isolated storage, the actual data compartment where the data is stored is
generated from some aspects of each application so that it is unique. The data compartment
contains one or more isolated storage files called stores, which reference where the actual
data is stored. The amount of data that can be stored in each store can be limited by code in
the application.

The actual physical location of the files will differ, depending upon the operating system
running on the user's computer and whether the store has roaming enabled or not. For all
operating systems since Vista, the location is in the hidden AppData folder in the user's
personal user folder. Within this folder, it will either be found in the Local or Roaming
folders, depending on the store's settings:

<SYSTEMDRIVE>\Users\<username>\AppData\Local
<SYSTEMDRIVE>\Users\<username>\AppData\Roaming

We can store any type of file in isolated storage, but as an example, let's take a look at how
we could utilize it to store text files. Let's first see the interface that we will use:

namespace CompanyName.ApplicationName.Managers.Interfaces
{
 public interface IHardDriveManager
 {
 void SaveTextFile(string filePath, string fileContents);

 string ReadTextFile(string filePath);
 }
}

Deploying Your Masterpiece Application Chapter 12

[582]

And now let's see the concrete implementation for the interface:

using CompanyName.ApplicationName.Managers.Interfaces;
using System.IO;
using System.IO.IsolatedStorage;

namespace CompanyName.ApplicationName.Managers
{
 public class HardDriveManager : IHardDriveManager
 {
 private IsolatedStorageFile GetIsolatedStorageFile()
 {
 return IsolatedStorageFile.GetStore(IsolatedStorageScope.User |
 IsolatedStorageScope.Assembly | IsolatedStorageScope.Domain,
 null, null);
 }

 public void SaveTextFile(string filePath, string fileContents)
 {
 try
 {
 IsolatedStorageFile isolatedStorageFile = GetIsolatedStorageFile();
 using (IsolatedStorageFileStream isolatedStorageFileStream =
 new IsolatedStorageFileStream(filePath, FileMode.OpenOrCreate,
 isolatedStorageFile))
 {
 using (StreamWriter streamWriter =
 new StreamWriter(isolatedStorageFileStream))
 {
 streamWriter.Write(fileContents);
 }
 }
 }
 catch { /*Log error*/ }
 }

 public string ReadTextFile(string filePath)
 {
 string fileContents = string.Empty;
 try
 {
 IsolatedStorageFile isolatedStorageFile = GetIsolatedStorageFile();
 if (isolatedStorageFile.FileExists(filePath))
 {
 using (IsolatedStorageFileStream isolatedStorageFileStream =
 new IsolatedStorageFileStream(filePath, FileMode.Open,
 isolatedStorageFile))
 {

Deploying Your Masterpiece Application Chapter 12

[583]

 using (StreamReader streamReader =
 new StreamReader(isolatedStorageFileStream))
 {
 fileContents = streamReader.ReadToEnd();
 }
 }
 }
 }
 catch { /*Log error*/ }
 return fileContents;
 }
 }
}

As with the other manager classes, we declare the HardDriveManager class in the
CompanyName.ApplicationName.Managers namespace. In the private
GetIsolatedStorageFile method, we obtain the IsolatedStorageFile object that
relates to the isolated storage store that we will save the user's data in by calling the
GetStore method of the IsolatedStorageFile class.

This method has a number of overloads that enable us to specify the scope, application
identity, evidence, and evidence types with which to generate the unique isolated storage
file. In this example, we use the overload that takes the bitwise combination of
the IsolatedStorageScope enumeration members and the domain and assembly
evidence types, which we simply pass null for.

The scope input parameter here is interesting and requires some explanation. Isolated
storage is always restricted to the user that was logged on and using the application when
the store was created. However, it can also be restricted to the identity of the assembly, or
to the assembly and application domain together.

When we call the GetStore method, it obtains a store that corresponds with the passed
input parameters. When we pass the User and Assembly IsolatedStorageScope
enumeration members, this acquires a store that can be shared between applications that
use the same assembly, when used by the same user. Typically, this is allowed under the
Intranet security zone, but not the Internet zone.

When we pass the User, Assembly, and Domain IsolatedStorageScope enumeration
members, this acquires a store that can only be accessed by the user, when running the
application that was used to create the store. This is the default and most common choice
for most applications, and so these are the enumeration members that were used in our
example.

Deploying Your Masterpiece Application Chapter 12

[584]

Note that if we had wanted to enable the user to use roaming profiles but still be able to
access their data from their isolated storage file, then we could have additionally included
the Roaming enumeration member with the other members.

Returning to the HardDriveManager class now, in the SaveTextFile method, we first call
the GetIsolatedStorageFile method to obtain the IsolatedStorageFile object. We
then initialize an IsolatedStorageFileStream object with the filename specified by the
filePath input parameter, the OpenOrCreate member of the FileMode enumeration and
the storage file object.

Next, we initialize a StreamWriter object with the IsolatedStorageFileStream
variable and write the data from the fileContents input parameter to the file specified in
the stream using the Write method of the StreamWriter class. Again, we enclose this in a
try...catch block and would typically log any exceptions that might be thrown from this
method, but omit this here for brevity.

In the ReadTextFile method, we initialize the fileContents variable to an empty string
and then obtain the IsolatedStorageFile object from the GetIsolatedStorageFile
method. We verify that the file specified by the filePath input parameter actually exists
before attempting to access it.

We then initialize an IsolatedStorageFileStream object with the filename specified by
the filePath input parameter, the Open member of the FileMode enumeration, and the
isolated storage file.

Next, we initialize a StreamReader object with the IsolatedStorageFileStream
variable and read the data from the file specified in the stream into the fileContents
input parameter using the Read method of the StreamReader object. Once again, this is all
enclosed in a try...catch block, and finally, we return the fileContents variable with
the data from the file.

In order to use it, we must first register the connection between the interface and our
runtime implementation with our DependencyManager instance:

DependencyManager.Instance.Register<IHardDriveManager, HardDriveManager>();

Then we can expose a reference to the new IHardDriveManager interface from our
BaseViewModel class and resolve it using the DependencyManager instance:

public IHardDriveManager HardDriveManager
{
 get { return DependencyManager.Instance.Resolve<IHardDriveManager>(); }
}

Deploying Your Masterpiece Application Chapter 12

[585]

We can then use it to save files to, or read files from, isolated storage from any View Model:

HardDriveManager.SaveTextFile("UserPreferences.txt", "AutoLogIn:True");

...

string preferences = HardDriveManager.ReadTextFile("UserPreferences.txt");

Realistically, if we were to save user preferences in this way, they would typically be in an
XML file, or in another format that is more easily parsed. However, for the purposes of this
example, a plain string will suffice.

As well as saving and loading files in an isolated storage store, we can also delete them and
add or remove folders to better organize the data. We can add further methods to our
HardDriveManager class and IHardDriveManager interface to enable us to manipulate
the files and folders from within the user's isolated storage store. Let's take a look at how
we can do this now:

public void DeleteFile(string filePath)
{
 try
 {
 IsolatedStorageFile isolatedStorageFile = GetIsolatedStorageFile();
 isolatedStorageFile.DeleteFile(filePath);
 }
 catch { /*Log error*/ }
}

public void CreateFolder(string folderName)
{
 try
 {
 IsolatedStorageFile isolatedStorageFile = GetIsolatedStorageFile();
 isolatedStorageFile.CreateDirectory(folderName);
 }
 catch { /*Log error*/ }
}

public void DeleteFolder(string folderName)
{
 try
 {
 IsolatedStorageFile isolatedStorageFile = GetIsolatedStorageFile();
 isolatedStorageFile.DeleteDirectory(folderName);
 }
 catch { /*Log error*/ }
}

Deploying Your Masterpiece Application Chapter 12

[586]

Quite simply, the DeleteFile method accesses the IsolatedStorageFile object from
the GetIsolatedStorageFile method and then calls its DeleteFile method, passing in
the name of the file to delete, which is specified by the filePath input parameter, within
another try...catch block.

Likewise, the CreateFolder method obtains the IsolatedStorageFile object from the
GetIsolatedStorageFile method and then calls its CreateDirectory method, passing
in the name of the folder to create, specified by the folderName input parameter, within a
try...catch block.

Similarly, the DeleteFolder method acquires the IsolatedStorageFile object by
calling the GetIsolatedStorageFile method and then calls its DeleteDirectory
method, passing in the name of the folder to delete, which is specified by the folderName
input parameter, within another try...catch block.

Now, let's adjust our previous example to demonstrate how we can use this new
functionality:

HardDriveManager.CreateFolder("Preferences");
HardDriveManager.SaveTextFile("Preferences/UserPreferences.txt",
 "AutoLogIn:True");

...

string preferences =
 HardDriveManager.ReadTextFile("Preferences/UserPreferences.txt");

...

HardDriveManager.DeleteFile("Preferences/UserPreferences.txt");
HardDriveManager.DeleteFolder("Preferences");

In this extended example, we first create a folder named Preferences in the isolated
storage store and then save the text file in that folder by prefixing the filename with the
name of the folder and separated from the name with a forward slash.

At a later stage, we can then read back the contents of the file by passing in the same file
path to the ReadTextFile method. If we need to clear up the store afterward, or if the file
was temporary, we can delete it by passing the same file path to the DeleteFile method.
Note that we must first delete the contents of a folder in the store before we can delete the
folder itself.

Deploying Your Masterpiece Application Chapter 12

[587]

Also note that we can create subdirectories in the isolated storage store by chaining their
names in the file path. For example, we can create a Login folder in the folder named
Preferences by simply appending the subdirectory name to the end of the parent folder
name and separating them with a forward slash again:

HardDriveManager.CreateFolder("Preferences");
HardDriveManager.CreateFolder("Preferences/Login");
HardDriveManager.SaveTextFile("Preferences/Login/UserPreferences.txt",
 "AutoLogIn:True");

This concludes our look into isolated storage files in .NET. But before we end this chapter,
let's briefly turn our attention to discover how to access our various application versions
and, indeed, what they all relate to.

Accessing application versions
In .NET, an application has a number of different versions, and so we have a number of
alternative ways to access them. The version number that we discussed earlier and is
displayed in the Publish Version section of the Publish tab of the project properties can be
found using the ApplicationDeployment class from the System.Deployment DLL:

using System.Deployment.Application;

...

private string GetPublishedVersion()
{
 if (ApplicationDeployment.IsNetworkDeployed)
 {
 return
 ApplicationDeployment.CurrentDeployment.CurrentVersion.ToString();
 }
 return "Not network deployed";
}

Note that we need to verify that the application has actually been deployed before we can
access the CurrentVersion property of the ApplicationDeployment class, otherwise an
InvalidDeploymentException will be thrown. This means that we cannot attain the
published version while debugging our WPF applications, and so we should return some
other value instead in these instances.

Deploying Your Masterpiece Application Chapter 12

[588]

In order to view the remaining application versions, we first need to access the assembly
that we want to know the version of. The code that we use to access the assembly will
depend on where in the code we currently are. For example, we typically want to display
the version of the startup assembly, but we may want to access it from a View Model in the
ViewModels project instead.

We have a number of ways of accessing assemblies, depending on where they are in
relation to the calling code. If we want to access the startup assembly from the startup
project, then we can use the Assembly.GetExecutingAssembly method after adding
using statements for the following namespaces:

using System.Diagnostics;
using System.Reflection;

To access the same assembly from a different project, we can use the
Assembly.GetEntryAssembly method. Alternatively, we can access the startup project's
assembly from a different project (if that project was called from the startup assembly)
using the Assembly.GetCallingAssembly method. For the remaining examples here,
we'll use the GetEntryAssembly method.

In addition to the published version, we may also need to access the application's assembly
or file versions. The assembly version that we can set in the Assembly Information dialog
window, which is accessible from the Application tab of the project properties window,
can be accessed from the assembly using the following code:

string assemblyVersion =
 Assembly.GetEntryAssembly().GetName().Version.ToString();

The assembly version is used by the .NET Framework to load and link references to other
assemblies at build and runtime. This is the version that is embedded when adding
references to our projects in Visual Studio and if an incorrect version is found during a
build, then an error will be raised.

Note that we can also set this value using the assembly level AssemblyVersionAttribute
class in the AssemblyInfo.cs file of the project, which can be found in the Properties
node of the project in the Solution Explorer.

Instead of converting the returned Version object to a string directly, we may prefer to
access the individual components that make up the version number. They comprise the
Major, Minor, Build, and Revision component values.

Deploying Your Masterpiece Application Chapter 12

[589]

We could then chose to just output the Major and Minor components, along with the
product name. Here's an example:

Version assemblyVersion = Assembly.GetEntryAssembly().GetName().Version;
string productName = FileVersionInfo.GetVersionInfo(
Assembly.GetEntryAssembly().Location).ProductName;
string output = $"{productName}: Version {version.Major}.{version.Minor}";

If we need the file version, which is used for non-ClickOnce deployments, we can pass the
location of the assembly to the GetVersionInfo method of the FileVersionInfo class,
as shown in the preceding code in the product name example, but access the FileVersion
property instead:

string fileVersion = FileVersionInfo.GetVersionInfo(
 Assembly.GetEntryAssembly().Location).FileVersion;

Note that we can also set this value in the Assembly Information dialog window, or by
using the assembly level AssemblyFileVersionAttribute class in the
AssemblyInfo.cs file of the project. This version can be seen in the Details tab of the file
properties dialog window in Windows Explorer:

Deploying Your Masterpiece Application Chapter 12

[590]

The product version that the assembly is distributed with can be accessed in a similar way:

string productVersion = FileVersionInfo.GetVersionInfo(
 Assembly.GetEntryAssembly().Location).ProductVersion;

Note that this version can also be seen in the Details tab of the file properties dialog
window in Windows Explorer, along with the product name that we accessed earlier. Also
note that in a WPF application, this value typically comes from the assembly file version.

Summary
In this chapter, we explored a number of different ways to deploy our WPF applications.
We looked over the older Setup Project type and the InstallShield Limited Edition Project
type, but focused primarily on the newer ClickOnce technology. We investigated how
ClickOnce deployments are made and how we can safely store and access data in isolated
storage. We ended by looking at a number of ways to access the various application
versions available to us in .NET.

In the final chapter of this book, we'll take a look at a summary of what has been covered
throughout this book and investigate what you can do next to continue this journey. We'll
suggest a few possible ways that you could extend our application framework further and
what you can do to advance your application development in general.

13
What Next?

In this book, we have discovered the MVVM architectural pattern and explored the process
of developing a WPF application, while taking advantage of the pattern's Separation of
Concerns and adhering to its principles. We investigated a number of different ways of
communicating between the various application layers and structuring our code base.

Importantly, we considered a variety of ways of debugging our WPF applications and
tracking down our coding problems. In particular, we revealed some tips and tricks to help
us to identify the causes of our data binding errors. In addition, we also learned how
viewing trace information can help us to detect problems, even after our applications have
been deployed.

We moved on to investigate the benefit of utilizing an application framework and began
designing and developing our own. We structured it in a way that did not tie our
framework to any particular feature or technology and experimented with a variety of
ways to encapsulate our required functionality.

We devoted a whole chapter to the essential art of data binding and took a detailed look at
the creation of Dependency Properties and Attached Properties. We looked at setting
Dependency Property metadata and were introduced to the crucial Dependency Property
Setting Precedence List. We then covered both standard and hierarchical data templates
and studied some interesting data binding examples.

Investigating the rich inheritance hierarchy of the built-in WPF controls enabled us to see
how their functionality is built up from each successive base class in the hierarchy. This, in
turn, enabled us to see that some controls are better to use in some situations than others.
We also found out how to customize the built-in controls and considered how best to make
our own controls.

What Next? Chapter 13

[592]

While the animation possibilities in a WPF application are practically endless, we
investigated the more usable options, primarily focusing on the syntax used in XAML. We
then added animation functionality directly into our application framework, where it could
be used with little effort on the part of developers.

After turning our attention to the look of our applications, we investigated a number of
techniques, such as borderless windows and adding shadows and glowing effects to more
advanced methods to make our application stand out from the crowd. We also
incorporated animations into our everyday controls, in order to bring about a sense of
exclusivity to our applications.

We thoroughly investigated the data validation options that the .NET Framework offers us,
primarily concentrating on the two available validation interfaces, and exploring a number
of different ways of implementing them. We probed advanced techniques, such as
multilevel validation and using data annotation attributes, and then added a complete
validation system into our application framework.

We further extended our application framework with an asynchronous data operation
system that was combined with a complete user feedback component, including an
animated feedback display mechanism. We continued by investigating how we can provide
in-application help and user preferences and implement work-heavy functions to save
users time and effort.

We also explored a number of options that we can use to increase the performance of our
WPF applications, from declaring our resources more efficiently to using lighter weight
controls and more efficient methods of rendering drawings, images, and text. We saw more
performant methods of data binding and discovered the importance of detaching event
handlers.

Finally, we investigated the last task in any professional application's development, its
deployment. We looked at a number of alternative methods but primarily focused on the
most popular ClickOnce technology. We investigated how ClickOnce deployments are
done and how we can safely store and access data in isolated storage. We ended with a
number of ways to access the various application versions available to us in .NET.

Overall, we've covered a plethora of information that, together, will enable us to create
efficient, visually appealing, highly usable, and highly productive applications in WPF.
What's more, we've now got our own application framework that we can reuse for each
new application that we create. So, what's next?

What Next? Chapter 13

[593]

Turning your attention to future projects
You could apply the concepts and ideas from this book to other areas and continue to
experiment and explore their effect in these new areas. For example, we've learned about
Adorner objects, so you could use that new-found knowledge to implement some visual
feedback for the common drag and drop functionality in the main window's adorner layer.

You could then further extend this idea, using what you've discovered about Attached
Properties, and completely encapsulate this drag and drop functionality, enabling the
developers that utilize your application framework to make use of this feature in a
property-based manner.

For example, you could create a DragDropProperties class that declared Attached
Properties, such as IsDragSource, IsDragTarget, DragEffects, DragDropType, and
DropCommand, and it could be extended by your relevant Attached Property classes, such
as a ListBoxProperties class.

You could then declare a BaseDragDropManager class to be used in the
DragDropProperties class, that stitches everything together, by attaching and removing
the appropriate event handlers, starting the drag and drop procedure, updating the cursor
via the drag and drop effects as it moves across the screen, and executing the ICommand
object assigned to the DropCommand Property.

This leads to a further area that could be extended. Not only can we handle UI events in
Attached Properties, but we can also combine them to perform more complex functionality.
For example, let's say that we have an Attached Property of type string, named Label.

When this property is set, it could apply a particular ControlTemplate element from
resources to the current TextBox object's Template property. This template could display
the text from this property in a secondary text element and therefore act as an internal label.
When the TextBox object has a value, the label text element could be hidden via an
IValueConverter implementation that extends our BaseVisibilityConverter class:

<TextBlock Text="{Binding (Attached:TextBoxProperties.Label),
 RelativeSource={RelativeSource AncestorType=TextBox}, FallbackValue=''}"
 Foreground="{Binding (Attached:TextBoxProperties.LabelColor),
 RelativeSource={RelativeSource AncestorType=TextBox},
 FallbackValue=#FF000000}" Visibility="{Binding Text,
 RelativeSource={RelativeSource AncestorType=TextBox},
 Converter={StaticResource StringToVisibilityConverter},
 FallbackValue=Collapsed}" ... />

What Next? Chapter 13

[594]

As shown in the preceding example, we could then declare another Attached Property,
named LabelColor, of type Brush, which specifies the color to be used by the Label
Attached Property when it is set. Note that if the LabelColor property is not set, then it
will either use its default value if it is set, or the value specified in the FallbackValue
property.

Improving our application framework
Another area that you can continue to work on is customizing our application framework
further and adapting it to your individual requirements. With this in mind, you could
continue to build up a complete collection of customized controls with a particular look and
feel in an external resource file to use in all of your applications.

There are also many other examples provided throughout this book that could be easily
extended. For example, you could update our DependencyManager class to enable
multiple concrete classes to be registered for each interface.

Instead of using a Dictionary<Type, Type> object to store our registrations, you could
define new custom objects. You could declare a ConcreteImplementation struct that has
a Type property and an object array to hold any constructor input parameters that may
be required for its initialization:

public ConcreteImplementation(Type type,
 params object[] constructorParameters)
{
 Type = type;
 ConstructorParameters = constructorParameters;
}

You could then declare a DependencyRegistration class that you could use to pair the
interface type with the collection of concrete implementations:

public DependencyRegistration(Type interfaceType,
 IEnumerable<ConcreteImplementation> concreteImplementations)
{
 if (!concreteImplementations.All(c =>
 interfaceType.IsAssignableFrom(c.Type)))
 throw new ArgumentException("The System.Type object specified by the
 ConcreteImplementation.Type property must implement the interface type
 specified by the interfaceType input parameter.",
 nameof(interfaceType));
 ConcreteImplementations = concreteImplementations;
 InterfaceType = interfaceType;
}

What Next? Chapter 13

[595]

In our DependencyManager class, you could change the type of the
registeredDependencies field to a collection of this new DependencyRegistration
type. The current Register and Resolve methods could then also be updated to use this
new collection type.

Alternatively, you could include other common functionality that is contained within
popular Dependency Injection and Inversion of Control containers, such as the automatic
registering of concrete classes to interfaces at the assembly level. For this, you could use
some basic reflection:

using System.Reflection;

...

public void RegisterAllInterfacesInAssemblyOf<T>() where T : class
{
 Assembly assembly = typeof(T).Assembly;
 IEnumerable<Type> interfaces =
 assembly.GetTypes().Where(p => p.IsInterface);
 foreach (Type interfaceType in interfaces)
 {
 IEnumerable<Type> implementingTypes = assembly.GetTypes().
 Where(p => interfaceType.IsAssignableFrom(p) && !p.IsInterface);
 ConcreteImplementation[] concreteImplementations = implementingTypes.
 Select(t => new ConcreteImplementation(t, null)).ToArray();
 if (concreteImplementations != null && concreteImplementations.Any())
 registeredDependencies.Add(interfaceType, concreteImplementations);
 }
}

This method first accesses the assembly that contains the generic type parameter and then
gets a collection of the interfaces in that assembly. It then iterates through the interface
collection and finds a collection of classes that implements each interface, instantiating a
ConcreteImplementation element with each. Each match is added into the
registeredDependencies collection with its relating interface type.

In this way, you could pass any interface type from our Models, Managers, and
ViewModels projects to automatically register all of the interfaces and concrete classes
found inside their assemblies. There is a clear benefit to doing this in larger applications, as
it will mean that you don't have to manually register each type:

private void RegisterDependencies()
{
 DependencyManager.Instance.ClearRegistrations();
 DependencyManagerAdvanced.Instance.
 RegisterAllInterfacesInAssemblyOf<IDataProvider>();

What Next? Chapter 13

[596]

 DependencyManagerAdvanced.Instance.
 RegisterAllInterfacesInAssemblyOf<IUiThreadManager>();
 DependencyManagerAdvanced.Instance.
 RegisterAllInterfacesInAssemblyOf<IUserViewModel>();
}

Additionally, you could declare another method that registers all types found in the
assembly of the type specified by the generic type parameter T, where matches of
implemented interfaces are found. This could be used during testing, so that you could just
pass any type from the mock projects during testing, again saving time and effort:

DependencyManager.Instance.
 RegisterAllConcreteImplementationsInAssemblyOf<MockUiThreadManager>();

As with all serious development projects, there is a need to test the code that makes up the
code base. Doing so obviously helps to reduce the number of bugs in the application, but
also alerts us when existing functionality has been broken, while adding new code. They
also provide a safety net for refactoring, allowing us to continually improve our designs,
while ensuring that existing functionality is not broken.

Therefore, one area that you could improve in the application would be to implement a full
test suite. This book has explained a number of ways for us to swap out code during testing
and this pattern can be easily extended. If a manager class uses some sort of resource that
cannot be used during testing, then you can create an interface for it, add a mock class, and
use the DependencyManager class to instantiate the relevant concrete implementation
during runtime and testing.

Another area from the book that could be extended relates to our AnimatedStackPanel
class. You could extract the reusable properties and animation code from this class to an
AnimatedPanel base class so that it could service several different types of animated
panels.

As suggested in Chapter 7, Mastering Practical Animations, you could then further extend
the base class by exposing additional animation properties so that users of your panel could
have more control over the animations that it provides. For example, you could add
alignment, direction, duration, and/or animation type properties to enable users of your
framework to use a wide variety of animation options.

These properties could be divided between the entry and exit animations, to enable
independent control over them. By providing a wide variety of these additional properties
in a base class, you can vastly simplify the process of adding new animated panels.

What Next? Chapter 13

[597]

For example, you could add a new AnimatedWrapPanel, or perhaps
an AnimatedColumnPanel, by simply extending the base class, and only have to
implement the two MeasureOverride and ArrangeOverride methods in the new panel.

Logging errors
In a number of places in the code examples in this book, you may have seen Log error
comments. In general, it is not only good practice to log errors, but it can also help you to
track down bugs and improve the overall user experience of the users of your applications.

The easiest place to log errors to would be an Errors database and the minimum useful
information fields that you'd want to store would include details of the current user, the
time the error occurred, the exception message, the stack trace, and the assembly or area
that it occurred in. This latter field can be found in the Module property of the exception's
TargetSite property:

public Error(Exception exception, User createdBy)
{
 Id = Guid.NewGuid();
 Message = FlattenInnerExceptions(exception);
 StackTrace = exception.StackTrace;
 Area = exception.TargetSite.Module.ToString();
 CreatedOn = DateTime.Now;
 CreatedBy = createdBy;
}

Note the use of the custom FlattenInnerExceptions method that also outputs the
messages from any inner exceptions that the thrown exception may contain. One
alternative to building your own FlattenInnerExceptions method would be to simply
save the ToString output of the exception, which will also contain details of any inner
exceptions that it may contain, although it will also contain stack trace and other
information as well.

Using online resources
As a final note, if you are not already familiar with the Microsoft Docs website, you really
should acquaint yourself with it. It is maintained for the Microsoft developer community
and includes everything from detailed APIs for their various languages, tutorial
walkthroughs, and code examples, through to downloads of their software.

What Next? Chapter 13

[598]

It can be found at https:/ /docs. microsoft. com and should be the first place you look
when questions arise over the members of the various classes in .NET. Should you not find
your required information in their APIs, then you can ask questions in their forums and
quickly receive answers from both the community and from Microsoft employees.

Another great developer resource is the Stack Overflow question and answer site for
development professionals, where I still answer questions when I can find the time. It can
be found online at http://stackoverflow.com/ and with answers often provided by the
community within seconds, it really is hard to beat and is one of the best development
forums around.

For further tutorials, check out the WPF Tutorial.net website at https:/ / www.wpftutorial.
net/, where you can find a wealth of tutorials, from basic to complex. And for interesting
and novel downloadable custom controls and additional tutorials, try visiting the WPF
section of the Code Project website at https:/ /www. codeproject. com/ kb/wpf/ .

All that remains now is for me to wish you well with your future application development
and your blossoming development careers.

https://docs.microsoft.com
https://docs.microsoft.com
https://docs.microsoft.com
https://docs.microsoft.com
https://docs.microsoft.com
https://docs.microsoft.com
https://docs.microsoft.com
https://docs.microsoft.com
https://docs.microsoft.com
http://stackoverflow.com/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.wpftutorial.net/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/
https://www.codeproject.com/kb/wpf/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Software Architecture with C# 8 and .NET Core 3
Francesco Abbruzzese, Gabriel Baptista

ISBN: 978-1-78980-093-7

Overcome real-world architectural challenges and solve design consideration
issues
Apply architectural approaches like Layered Architecture, service-oriented
architecture (SOA), and microservices
Learn to use tools like containers, Docker, and Kubernetes to manage
microservices
Get up to speed with Azure Cosmos DB for delivering multi-continental
solutions
Learn how to program and maintain Azure Functions using C#
Understand when to use test-driven development (TDD) as an approach for
software development
Write automated functional test cases for your projects

https://www.packtpub.com/in/programming/hands-on-software-architecture-with-c-8

Other Books You May Enjoy

[600]

Hands-On RESTful Web Services with ASP.NET Core 3
Samuele Resca

ISBN: 978-1-78953-761-1

Gain a comprehensive working knowledge of ASP.NET Core
Integrate third-party tools and frameworks to build maintainable and efficient
services
Implement patterns using dependency injection to reduce boilerplate code and
improve flexibility
Use ASP.NET Core's out-of-the-box tools to test your applications
Use Docker to run your ASP.NET Core web service in an isolated and self-
contained environment
Secure your information using HTTPS and token-based authentication
Integrate multiple web services using resiliency patterns and messaging
techniques

https://www.packtpub.com/in/application-development/hands-restful-web-services-aspnet-core

Other Books You May Enjoy

[601]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET application versions
 accessing 587, 588, 590
.NET controls, section selection
 emphasizing 299, 300, 301, 303, 304, 306,

307, 309
 highlighting 292
 indicating, in axes 292, 293, 295, 296, 298
.NET controls
 adapting, to fulfill requisites 278, 279, 281
 data, displaying in spreadsheet 281, 282, 283,

285, 287
 default behavior, altering 268, 270, 271, 273,

274, 275
 GetLayoutClip method, using 265, 266, 267,

268

 overridable methods, creating 276, 277, 278
 protected methods, inspecting 259, 260, 262,

264

 spreadsheet sections, styling 287, 288, 291

A
adorner class 217, 218, 219, 221, 222
adorner layer 217
animations, storyboards
 controlling 326, 327, 329, 330, 331, 333, 334
animations, timelines
 investigating 310, 311, 312, 313, 314, 315,

316, 317, 319, 320
animations
 creating 341, 343, 344, 345, 346, 348, 351,

354, 355, 357
 easing functions 334, 335, 336, 338, 339
 performing, along with paths 340, 341
 Storyboard class, using 324, 326
application codebase

 structuring 23, 26, 28, 29, 32
application framework functionality
 dependency injection, implementing for 108,

109, 111, 113, 115, 116
 encapsulating 53, 54, 55, 56, 57, 58
 encapsulating, in base classes 58, 59, 60, 61
 encapsulating, in converters 74, 75, 76, 78, 80,

81

 encapsulating, in UI controls 70, 71, 73, 74
 encapsulating, through extension method 65, 66,

67, 68, 70
 encapsulating, through interfaces 61, 63, 64, 65
 implementing, by connecting Views with View

Models 117, 118
 implementing, in services 105, 106, 107, 108
application framework
 about 52, 53
 data access layer, separating 99, 101, 102,

103, 104
 errors, logging 597
 improving 594, 595, 596
 online resources, using for 597, 598
application performance
 improving 530, 531
application usability
 improving 512
 improving, by enabling user preferences 514,

516, 517
 improving, by extending common courtesies

517, 518, 519, 520
 improving, by producing in-application help 512,

513

 improving, by unburdening end user 520, 521,
522

applications, styling
 about 358
 default control styles, overriding for 359, 360,

[603]

361

 with professional icons 361, 362
Async keyword
 discovering 490, 493
async methods 490
asynchrony
 building, into framework 493, 495, 496, 497,

498, 499, 500, 501, 502, 505, 506, 507, 509,
510, 511

Attached Properties
 registering 160, 161, 162
 used, for manipulating built-in WPF controls 243,

245

Await keywords
 discovering 490, 493

B
base classes declaration
 benefits 91
base classes
 application framework functionality,

encapsulating 58, 59, 60, 61
borderless windows
 exploring 378, 379, 380, 383, 384, 385, 386
built-in WPF controls
 about 187, 188
 adorner class 217, 218, 219, 221, 222
 Canvas class 188, 190
 combining 246, 247, 249, 250
 ContentControl class 208, 209
 ContentPresenter class 209, 210
 custom layout behavior 205, 206, 208
 DockPanel class 190, 192
 Grid panel 193, 194, 195, 199
 investigating 183
 ItemsControl class 211, 212, 213, 215, 216,

217

 layout system 186
 manipulating, with attached properties 243, 245
 modifying 223
 modifying, with Trigger classes 232, 234, 235,

237

 StackPanel 199, 201
 styling 223, 224
 styling, by merging Resources 228, 229, 231

 styling, with Resources 225, 226, 227
 templating 237, 239, 240, 241, 243
 UniformGrid panel 201, 202, 203
 using, for inheriting application framework

abilities 184, 185
 WrapPanel panel 203, 205

C
Caliburn.Micro 53
Canvas class 188, 190
changing dependency property values
 catching 48
ClickOnce functionality
 deployments, securing 579, 580
 storage, isolating 581, 584, 585, 586
 utilizing 577, 578, 579
collections
 virtualizing 562, 563, 564
composite visuals
 reusing 366, 367
container timeline 324
ContentControl class 208, 209
ContentPresenter class 209, 210
control-related performance, benefits
 conclusions, drawing 531, 532, 533, 535, 536,

537, 538, 540, 541, 543, 545, 546
converters
 application framework functionality,

encapsulating 74, 75, 76, 78, 80, 81
 exploiting 49, 50, 51
custom application framework
 constructing 82, 84, 85, 86, 87, 90, 91, 92, 94,

95, 97, 99
custom built-in WPF controls
 creating 250, 251, 253, 256, 258
custom layout behavior 205, 206, 208

D
data access layer (DAL)
 about 8
 separating 99, 101, 102, 103, 104
data annotation attributes 443, 444, 445, 446,

447

data binding
 about 126, 127, 556

[604]

 Binding class, exploring 131, 132, 133
 collections 558
 data bound values, converting 142, 143, 144,

145, 146, 147
 data-bound traffic, directing 134
 dependency properties, registering 557
 enumeration values, converting 179, 180, 182
 errors, fixing 557
 from control templates 140, 141
 invalid characters, avoiding 130, 131
 path syntax 127, 128, 129, 130
 priority, setting 139, 140
 source, setting 135, 136, 137, 138
 sources, modifying 141, 142
 to multiple binding sources 148, 149, 151
data objects
 shrinking 559, 560, 561, 562
data templates
 about 168, 169, 171, 172
 controlling 172, 174
 hierarchical data, displaying 175, 176, 177, 178
data-bound values
 changing dependency property values, catching

48

 converters, exploiting 49, 51
 debugging 46, 47
 outputting, to UI controls 47
data
 visualizing 386, 389, 391, 394, 396, 398, 400,

401

default control styles
 overriding 360, 361
delegates
 using 20, 22, 23
dependency injection
 implementing 108, 109, 111, 113, 115, 116
Dependency Properties
 about 152, 153, 154
 Attached Properties, registering 160, 161, 162
 metadata, setting 155, 156, 157, 158
 read-only Dependency Properties, declaring

159, 160
 value-setting sources, prioritizing 162, 164, 165,

166, 168
Dependency Property Identifier 153

Dependency Property Setting Precedence List 162
DockPanel class 190, 192

E
easing functions 334, 335, 336, 338, 339
error template
 customizing 454, 456, 457
events
 handling 564, 565, 567
extension methods
 application framework functionality, encapsulating

through 65, 66, 67, 69, 70

G
glowing effects
 creating 370, 372
graphical user interface (GUI) 7
Graphics Processing Unit (GPU) 525
Grid class, properties
 IsSharedSizeScope attached property 196
 ShowGridLines property 196
Grid panel 193, 194, 195, 198, 199

H
hardware rendering 525, 526, 527

I
IDataErrorInfo interface
 implementing 417, 418, 419, 420, 421, 422,

423, 424, 426, 427, 428, 429, 431, 433, 434
images
 performance, enhancing 546, 547, 548
indirect property targeting 128
inner exceptions
 discovering 43, 44, 46
INotifyDataErrorInfo interface 434, 437, 438, 440,

441, 442
InstallShield Limited Edition project
 working with 574, 575, 576, 577
interfaces
 application framework functionality, encapsulating

through 61, 63, 64, 65
ItemsControl class 211, 212, 213, 215, 216, 217

[605]

K
key-frame animations 320, 321, 322, 324

L
layout pass 531
legacy behavior
 synchronizing with 463, 465
levels of validation
 varying 447, 449
light
 reflecting 368, 370

M
measure pass 186
model-view-controller (MVC) 9
Model-View-View Model (MVVM)
 about 8, 211
 benefits 10, 11
 data binding 10
 downsides 11
 ICommand interface, using 15, 17, 18
 misconceptions 12, 13
 Models 8, 9
 UI events functionality, implementing 13, 15
 View Models 9
 Views 10
multiple borders
 declaring 364
multiple threads
 utilizing 489
MVVM Light Toolkit 53

N
null-coalescing operator 97

O
Object-Oriented Programming (OOP) 52
objects
 freezing 528, 529, 530
 freezing, benefit 528
One-Way mode 134
output window
 utilizing 35, 36

P
Panel class 187
PathFigure object
 using 340
PathSegment object
 using 340
Personal Information Exchange (PFX) file 580
Prism 53
professional icons
 using 361, 362

R
read-only Dependency Properties
 declaring 159
reflections
 casting 375, 377
resources
 making efficient 527, 528
Rich Text Format (RTF) 576

S
separation of concerns (SoC) 8
shadows
 throwing 363, 364
Stack Overflow
 URL 598
StackPanel 199, 201
Storyboard class
 using 324, 326
Strong Name Key (SNK) file 580

T
textual output
 Hyperlink elements, using 553, 555, 556
 performance, enhancing 548, 550, 552
Trigger classes
 used, for modifying built in WPF controls 231,

232, 234, 235, 237
Two-Way binding 134

U
UI controls
 application framework functionality,

encapsulating 70, 71, 73, 74

 enhancing 402, 405, 406, 408, 409, 412, 414
 values, outputting to 47
UI-based validation errors
 avoiding 457, 458, 460, 461, 463
Uniform Resource Identifier (URI) 228
UniformGrid panel 201, 202, 203
user feedback
 providing 477, 479, 480, 481, 482, 484, 485,

487, 488, 489
user interface (UI) 8, 183

V
validation interfaces
 IDataErrorInfo interface, implementing 417, 418,

419, 420, 421, 422, 423, 424, 426, 427, 428,
429, 431, 433, 434

 INotifyDataErrorInfo interface 434, 437, 438,
440, 441, 442

 using 417
validation rules
 using 416
validation techniques
 incorporating 449, 450, 452, 454
validation
 amalgamating 465, 466, 468, 470, 472, 473,

475, 476
View Models

 locating 119, 120, 122, 123, 124
 Views, connecting with 117, 118
Views
 connecting, with View Models 117, 118
visuals
 amalgamating 465, 466, 468, 470, 472, 473,

475, 476
 layering 363, 372, 375

W
Windows applications
 installing 568, 573
 InstallShield Limited Edition project, working with

574, 575, 576, 577
 Setup Project 569, 570, 571, 572, 573
Windows Presentation Foundation (WPF)
 about 7
 events, handling in attached properties 18, 20
 future projects 593, 594
 ICommand interface, using 15, 17, 18
Windows Setup Project 569, 570, 571, 572, 573
WPF Application Framework (WAF) 53
WPF presentation trace sources
 enabling 37, 38, 39, 41, 42
WPF Tutorial.net
 URL 598
WrapPanel panel 203, 205

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: A Smarter Way of Working with WPF
	What is MVVM and how does it help?
	Models
	View Models
	Views
	Data binding
	So how does MVVM help?
	Is there a downside?

	Debunking the myth about code behind
	Learning how to communicate again
	Introducing the ICommand interface
	Handling events in Attached Properties
	Making use of delegates

	Structuring the application code base
	Summary

	Chapter 2: Debugging WPF Applications
	Utilizing the output window
	Putting Presentation Trace Sources to work
	Discovering inner exceptions
	Debugging data bound values
	Outputting values to UI controls
	Catching changing Dependency Property values
	Exploiting converters

	Summary

	Chapter 3: Writing Custom Application Frameworks
	What is an application framework?
	Encapsulating common functionality
	In base classes
	Through interfaces
	With Extension Methods
	In UI controls
	With converters

	Constructing a custom application framework
	Separating the Data Access Layer
	Providing services
	Implementing Dependency Injection
	Connecting Views with View Models
	Locating View Models

	Summary

	Chapter 4: Becoming Proficient with Data Binding
	Data binding basics
	Binding path syntax
	Escaping invalid characters

	Exploring the Binding class
	Directing data bound traffic
	Binding to different sources

	Binding with priority
	Binding from within control templates
	Binding source changes
	Converting data bound values
	Binding multiple sources to a single target property

	Dependency Properties
	Setting metadata
	Declaring read-only Dependency Properties
	Registering Attached Properties
	Prioritizing value setting sources

	Data templates
	Taking complete control
	Displaying hierarchical data

	Data binding to enumeration collections
	Summary

	Chapter 5: Using the Right Controls for the Job
	Investigating the built-in controls
	Inheriting framework abilities
	Laying it on the line
	Containing controls
	Canvas
	DockPanel
	Grid
	StackPanel
	UniformGrid
	WrapPanel
	Providing custom layout behavior

	Content controls
	Presenting content

	Items controls
	Adorners

	Modifying existing controls
	Styling
	Being resourceful
	Merging resources

	Triggering changes
	Templating controls
	Attaching properties

	Combining controls
	Creating custom controls
	Summary

	Chapter 6: Adapting the Built-In Controls
	Inspecting protected methods
	Clipping the layout

	Altering default behavior
	Creating overridable methods

	Tailoring to attain our requirements
	Populating with Data
	Progressing toward the Target
	Highlighting the selection
	Indicating in the Axes
	Emphasizing the Selection

	Summary

	Chapter 7: Mastering Practical Animations
	Investigating timelines
	Introducing key-frames
	Telling stories
	Controlling storyboards

	Easing functions
	Animating along a path
	Creating everyday animations
	Summary

	Chapter 8: Creating Visually Appealing User Interfaces
	Styling applications consistently
	Overriding default control styles
	Using professional icons

	Layering visuals
	Throwing shadows
	Declaring multiple borders
	Reusing composite visuals
	Reflecting light
	Creating glowing effects
	Putting it all together

	Moving away from the ordinary
	Casting reflections
	Exploring borderless windows
	Visualizing data
	Livening up the UI controls

	Summary

	Chapter 9: Implementing Responsive Data Validation
	Using validation rules – to do or not to do?
	Getting to grips with validation interfaces
	Implementing the IDataErrorInfo interface
	Introducing the INotifyDataErrorInfo interface

	Annotating data
	Varying levels of validation
	Incorporating multiple validation techniques
	Customizing the error template
	Avoiding UI-based validation errors
	Keeping Synchronized with Legacy Behavior
	Amalgamating validation and visuals
	Summary

	Chapter 10: Completing that Great User Experience
	Providing user feedback
	Utilizing multiple threads
	Discovering the Async and Await keywords
	Building asynchrony into our framework

	Going the extra mile
	Producing in-application help
	Enabling user preferences
	Extending common courtesies
	Unburdening the end user

	Summary

	Chapter 11: Improving Application Performance
	Leveraging the power of hardware rendering
	Making more efficient resources
	Freezing objects

	Using the right controls for performance
	Drawing conclusions
	Imaging more efficiently
	Enhancing the performance of textual output
	Liking the linking

	Data binding
	Registering Dependency Properties
	Binding to collections

	Shrinking data objects
	Virtualizing collections
	Handling events
	Summary

	Chapter 12: Deploying Your Masterpiece Application
	Installing Windows applications
	Introducing the Setup Project
	Working with the InstallShield Limited Edition project

	Utilizing ClickOnce functionality
	Securing deployments
	Isolating storage

	Accessing application versions
	Summary

	Chapter 13: What Next?
	Turning your attention to future projects
	Improving our application framework
	Logging errors
	Using online resources

	Other Books You May Enjoy
	Index

